Der gemeine Küchenherd als Beispiel für die Anwendung des Stefan-Boltzmann-Gesetzes – Teil 2

von Uli Weber

In Teil 1 (hier) hatte ich zunächst in Kapitel (A) meine Motivation für diesen Artikel erläutert. In Kapitel (B) wurden dann die verständnisfördernden physikalischen Einheiten und deren Zusammenhang beschrieben. Darauf folgte in Kapitel (C) das sagenumwobene Stefan-Boltzmann-Gesetz und in Kapitel (D) die zeitlichen und geometrischen Bedingungen, unter denen dieses physikalische Gesetz anzuwenden ist. Und schließlich wurde in Kapitel (E) der sogenannte „natürliche atmosphärische Treibhauseffekt“ vorgestellt.

Hier in Teil 2 beginnen wir nun mit der Fortsetzung von Kapitel (E) aus Teil 1:

Schau‘n wir mit dem, was wir bisher gelernt haben, also einmal auf diese eigenartige Stefan-Boltzmann-Berechnung der Klimawissenschaft, an deren Ende ein „natürlicher atmosphärischer Treibhauseffekt“ stehen soll:

  • Die Sonne scheint nur auf der Tagseite der Erde und die andere Hälfte der Erde ist dunkel, aber man mittelt die Sonneneinstrahlung einfach über Tag und Nacht.
  • Aus dem Beispiel mit der Glühbirne haben wir gelernt, dass wir über Dunkelzeiten keinen Durchschnitt bilden dürfen, weil das zu physikalisch falschen Ergebnissen führt.
  • Und aus dem Beispiel mit dem Herd haben wir gelernt, dass eine Pizza nicht aufgebacken wird, wenn der Herd nicht angeschaltet ist. Folglich kann also auch die Sonne keine Temperatur auf der Erde erzeugen, wenn sie nachts gar nicht scheint.
  • Die Klimawissenschaft rechnet also einfach über 24 Stunden, weil man weiß, dass der Tag nun mal so lang ist, und nicht über 12 Stunden, obwohl nur da die Sonne scheint. Vielmehr weist man dann der dunklen Nachtseite der Erde dieselbe Temperatur zu wie der sonnenbeschienenen Tagseite. Und nun wundert man sich, dass diese „theoretische Temperatur“ nicht mit der „gemessenen“ globalen Durchschnittstemperatur übereinstimmt, sondern sich eine Differenz von 33°C zugunsten der „gemessenen“ Temperatur ergibt.
  • Als Erklärung für diese Temperaturdifferenz von 33°C konstruiert die Klimawissenschaft dann ihren „natürlichen atmosphärischen Treibhauseffekt“, der durch eine sogenannte „atmosphärische Gegenstrahlung“ der IR-aktiven „Klimagase“ erzeugt werden soll.

(F) Gegenprobe mit der physikalischen Wärmelehre und Richtungsvektoren: Wir müssen jetzt noch etwas in die physikalische Wärmelehre einsteigen. Die Hauptsätze der Thermodynamik beschäftigen sich mit der Umwandlung und Änderung von Energie innerhalb eines oder mehrerer Systeme. Das klingt zunächst einmal sehr abstrakt, ist aber ganz einfach zu verstehen:

  1. Energieerhaltungssatz: Energie kann weder erschaffen noch vernichtet, sondern nur umgewandelt werden.

Beispiel: Wenn Sie mit Holzkohle grillen, dann entziehen Sie damit der Holzkohle die dort gespeicherte Energie, und diese Energie heizt wiederum den Grill, die Wurst und die umgebende Luft – und wenn Sie zu nah ‘rangehen, verbrennen Sie Sich die Finger…

  1. Richtung von Prozessen: Es gibt keine Zustandsänderung, deren einziges Ergebnis die Übertragung von Wärme von einem Körper niederer auf einen Körper höherer Temperatur ist.

Beispiel: Es kann kein Perpetuum Mobile geben. Ein Perpetuum Mobile wäre ein Prozess, der ohne Zufuhr von Energie selbständig Energie erzeugen kann. Stellen Sie sich dazu einfach mal ein Auto vor, mit dem Sie ohne zu tanken beliebig herumfahren könnten, weil es die erforderliche Energie selber erzeugt – schön wär’s…

Und mit diesem Wissen schauen wir uns jetzt noch einmal den sogenannten „natürlichen atmosphärischen Treibhauseffekt“ an. Mit dem „Energieerhaltungssatz“ müssen wir fordern, dass die Erde im Mittel genauso viel Energie abstrahlt, wie sie im Mittel von der Sonne erhält. Denn würde sie mehr abstrahlen, dann würde die Erde kontinuierlich kälter; würde sie dagegen weniger abstrahlen, würde sie kontinuierlich wärmer. Mit der „Richtung von Prozessen“ müssen wir in erster Näherung schließen, dass der „natürliche atmosphärische Treibhauseffekt“ eine zusätzliche eigene Energiequelle besitzt, nämlich die sogenannte „atmosphärische Gegenstrahlung“ der IR-aktiven „Klimagase“. Der vorgebliche Weg ist folgender:

Solare Einstrahlung (primär): Die hochfrequente (HF) solare Einstrahlung heizt die Erdoberfläche auf.

Terrestrische Abstrahlung (sekundär): Die erhitzte Erdoberfläche strahlt infrarote (IR) Strahlung ab.

(?) Atmosphärische „Gegenstrahlung“ (tertiär): Die sogenannten „Klimagase“ nehmen angeblich die IR-Strahlung der Erde auf und strahlen sie vorgeblich je zur Hälfte ins Weltall und zur Erde zurück, und zwar als sogenannte „Gegenstrahlung“. Durch diesen „Treibhauseffekt“ soll die Erde sich um 33°C erwärmen.

Wir stellen also fest:

(1.) Mit einem Gleichstand zwischen der primären Einstrahlung und der sekundären Abstrahlung wäre der Energieerhaltungssatz erfüllt.

(2.) Die „Wiederverwendung“ der sekundären Abstrahlung als zusätzliche Heizquelle für die Erdoberfläche wäre dagegen ein Perpetuum Mobile, denn die Erdoberfläche würde sich dann durch ihre eigene Abstrahlung zusätzlich weiter erwärmen. Dieser „Münchhauseneffekt“ ist aber physikalisch unmöglich.

Beweis durch Widerspruch: Gäbe es eine wie immer geartete IR-Heizung, durch deren IR-Bestrahlung von „Klimagasen“ eine „Gegenstrahlung“ erzeugt werden könnte, die einen Temperaturanstieg von 33°C gegenüber der ursprünglichen Quelle erzeugen würde, dann hätten wir alle jetzt und in alle Zukunft keinerlei Heizungsprobleme mehr.

Ergebnis: Gibt es eine solche Gegenstrahlungsheizung?

Nein: Es ist also schon sehr eigenartig, was die sogenannte „Klimawissenschaft“ auf Basis „glaubensgerechter Physik“ so daherzurechnen beliebt!

Richtungsvektoren: Es gibt noch einen weiteren physikalischen Nachweis für die Unsinnigkeit einer platten Faktor4-Mittelung der solaren Sonneneinstrahlung zur Ermittlung einer „natürlichen“ Temperatur unserer Erde. Dazu müssen wir wissen, was ein „Vektor“ und was ein „Skalar“ ist, Zitat von ingenieurkurse.de:

Ein Vektor ist eine physikalische Größe, die durch Angabe eines Zahlenwertes, ihrer Einheit und zusätzlich durch eine Richtung charakterisiert ist. Beispiele für Vektoren sind: Die Geschwindigkeit ist ein Vektor. Bei der Geschwindigkeit wird zusätzlich zur Angabe eines Zahlenwertes plus Einheit eine Richtung angegeben.

Ein Skalar ist eine physikalische Größe, die durch die Angabe eines Zahlenwertes und ihrer Einheit charakterisiert ist.

Also: Ein Vektor ist eine gerichtete physikalische Größe, die eine Maßzahl, eine eindeutige Richtung und eine physikalische Einheit besitzt. Stellen Sie Sich einfach einen Pfeil vor, dessen Spitze die Richtung anzeigt und die Länge des Schaftes den Betrag angibt. Ein Skalar ist dagegen eine ungerichtete Größe, die nur eine Maßzahl (Betrag) und eine physikalische Einheit besitzt, ein Richtungsbezug fehlt hier völlig. Und jetzt schauen wir uns noch einmal die Situation bei der Sonnenbestrahlung der Erde genauer an:

Abbildung: Die solare Bestrahlung der Erde und die terrestrische Abstrahlung
Quelle: Prof. Dr. Dr. h. c. Gerhard G. Paulus: Erderwärmung zum Nachrechnen

Die gelbe solare HF-Einstrahlung in dieser Abbildung ist mit parallelen (alle Strahlen sind gerader Richtung nebeneinander auf die Erde gerichtet) Strahlenvektoren auf die Erde gerichtet, während die rote IR-Abstrahlung radial (senkrecht zur Erdoberfläche) von der Erdoberfläche wegführt. Die Stärke der terrestrischen IR-Abstrahlung ergibt sich bei der klimaalarmistischen THE-Berechnung jetzt aus der Viertelung der solaren HF-Einstrahlung minus Albedo. Dabei kommt es aber zu einer Kollision der gerichteten Vektoren von HF-Ein- und IR-Abstrahlung, denn ein Vektor ändert nicht ohne Grund seine Richtung. Man hat bei dieser konventionellen Berechnung der Klimawissenschaft also ganz offensichtlich die unterschiedlichen vektoriellen Richtungen ignoriert und die Strahlungswerte lediglich als ungerichtete Skalare behandelt.

Frage: Auf welche Weise kann nun der Vektor der parallel einfallenden HF-Sonneneinstrahlung auf die radiale Richtung der IR-Abstrahlung der Erde „umgebogen“ werden?

Antwort: Gar nicht – eine Änderung des Richtungsvektors kann nur erfolgen, wenn zwischen HF-Einstrahlung und IR-Abstrahlung ein eigenständiger physikalischer Prozess stattfindet. Dieser Prozess ist die Erwärmung der Erdoberfläche durch die solare HF-Einstrahlung. Dann, und nur dann, strahlt die Erdoberfläche ihre IR-Wärmestrahlung radial ab. Und nur dann strahlt die Erdoberfläche auf der Nachtseite ebenfalls radial ab, weil durch die Drehung der Erde die erwärmte Oberfläche einfach auf die Nachtseite „mitgenommen“ wird.

(G) Und nun kommt endlich mein hemisphärisches Stefan-Boltzmann-Modell: Versuchen wir einfach mal eine Temperaturberechnung allein für die Tagseite der Erde. Dazu nehmen wir an, die Sonne stünde genau über dem Äquator, also auf dem Frühlings- oder Herbstpunkt (Tag-und-Nacht-Gleiche). Dann teilen wir die gekrümmte Tagseite der Erde (Halbkugelfläche) in konzentrische Ringe um diesen Fußpunkt der Sonne auf, wobei auf jeder Ringfläche die spezifische Strahlungsleistung der Sonne konstant ist:

Abbildung: Die Tagseite der Erde, aufgeteilt in konzentrische Ringe von jeweils 1 Grad um den Fußpunkt der Sonne auf dem Äquator, also 0°-1°, 1°-2°, 2°-3°,….., 89°-90°.

Wegen der Erdkrümmung erhält nämlich jeder dieser konzentrischen Ringe einen ganz individuellen Anteil der Sonneneinstrahlung. Im Zentrum, am Fußpunkt der Sonne auf dem Äquator (=0°), treffen die Sonnenstrahlen senkrecht auf die Erdoberfläche. Der Boden dort erhält also die gesamten 940 /m² (=1.367 W/m² – 30%) von der Sonne. Zur Mitte und zum Rand hin vermindert sich dieser Wert aufgrund der immer schräger werdenden Auftreffwinkel der Sonnenstrahlen kontinuierlich, bis schließlich die Sonneneinstrahlung ganz am Rand (=90°) auf 0 W/m² zurückgeht. Der Richtungsabhängigkeit der solaren HF-Einstrahlung ist somit also Genüge getan. Wenn wir nun für jeden Ring aus der jeweiligen Sonneneinstrahlung eine Temperatur mit dem Stefan-Boltzmann-Gesetz ableiten und dann über alle Ringe eine Mittelung durchführen, dann erhalten wir +14,03°C. Und wenn wir die Ringe noch schmaler machen, dann werden es sogar +15,15°C, also ziemlich genau die sogenannte „global gemessene Durchschnittstemperatur“. Und die IR-Strahlung der erwärmten Erdoberfläche strahlt nun überall auf der Erde radial von der Erdoberfläche ab, wie es das Stefan-Boltzmann-Gesetz befiehlt.

Wir sehen also, wenn wir mit dem Stefan-Boltzmann-Gesetz physikalisch richtig rechnen, bleibt gar kein Platz mehr für einen „natürlichen atmosphärischen Treibhauseffekt“ und damit auch keine Notwendigkeit, unsere technische Zivilisation aus Angst vor einer globalen Klimakatastrophe zu zerstören. Denn gegenüber der vorstehend berechneten Durchschnittstemperatur von ca. 15°C für die Tagseite der Erde müsste die „theoretische“ Nachttemperatur nun um 66°C absinken, um im gemeinsamen Mittel eine globale „theoretische“ Durchschnittstemperatur von -18°C zu ergeben. Aber haben Sie einen solchen nächtlichen Temperatursturz von mehr als 60°C schon jemals erlebt? – Nein? – Und auch der sogenannte „natürliche atmosphärische Treibhauseffekt“ von 33°C hilft hier wenig, denn dann würden immer noch 33°C fehlen.

ERGEBNIS: Es gibt auf unserer Erde gar keinen „natürlichen atmosphärischen Treibhauseffekt“!

Und auf der immer als „leuchtendes“ THE-Beispiel herangezogenen Venus übrigens auch nicht!

(H) Noch ein paar abschließende Bemerkungen zum globalen Wärmetransport und zur Wärmespeicherung auf der Erde: Es ist offensichtlich, dass auf der Erdoberfläche die rein rechnerische Temperatur nach dem Stefan-Boltzmann-Gesetz aus der solaren Einstrahlung nirgendwo erreicht wird. Andererseits wissen wir aber aus dem Energieerhaltungssatz der Wärmelehre, dass Energie nicht einfach so verschwinden kann. Vielmehr vermindert der ständige Abfluss von Wärme durch Konvektion und Verdunstung den durch die Sonneneinstrahlung bedingten örtlichen Temperaturanstieg. Dabei spielt der Energietransport durch Atmosphäre und Ozeane aus Tropen und Subtropen in die Polarzonen hinein eine ganz wesentliche Rolle für unser Klima. Die nachfolgende Abbildung hatte ich schon in vielen Artikeln als Beweisführung für meinen hemisphärischen S-B-Ansatz herangezogen, und zwar zuletzt in dem Artikel, „Die dunkle Seite unserer Erde und der meridionale Energietransport“ (2022):

Abbildung: „Jahresmittel des Energiehaushaltes der Atmosphäre und seiner Komponenten in Abhängigkeit von der geographischen Breite“ nach HÄCKEL, H. (1990): Meteorologie. – 8. Aufl. 2016; Stuttgart (Verlag Eugen Ulmer), ISBN 978-3-8252-4603-7)

Hinweis: Die X-Achse (90° Nord bis 90° Süd) ist als „Draufsicht“ auf die Erde eingeteilt, d.h. die Abstände zwischen 0° und 90° werden jenseits von 30° sichtbar kürzer.

In dieser Abbildung bedeutet die „0 [W/m²]“-Linie die „durchschnittliche“ Ortstemperatur, die sich im Gleichgewicht von solarer Einstrahlung und örtlichem Energie-zu-/ab-fluss einstellt. Die (unterschiedlich schraffierten) Linien oberhalb der „0“-Linie stellen einen Energieüberschuss dar, die Linien unterhalb der „0“-Linie einen Energieverlust. Nehmen wir zum Beispiel einmal das Maximum links von 0° (=Äquator). Aus der Strahlungsbilanz und der latenten Energie (die Energie, die durch Verdunstung im Wasserdampf gebunden ist) sind jeweils ca. 45 [W/m²] vorhanden und ergeben zusammen 90 [W/m²] Überschuss. Gleichzeitig tritt durch Advektion (Verfrachtung) ein Wärmeverlust von ca. 60 [W/m²] durch Luftströmungen und ca. 30 [W/m²] durch Wasserströmungen ein, also insgesamt ebenfalls 90 [W/m²]. Für jeden Punkt auf der X-Achse von 90° Nord bis 90° Süd halten sich bei einer individuellen örtlichen Durchschnittstemperatur Energieüberschuss und Energieverlust also genau die Waage.

Dieser polwärts gerichtete Energietransport auf unserer Erde bewirkt, dass die Ortstemperatur in den Tropen und Subtropen bis in die sommerlichen mittleren Breiten hinein niedriger ausfällt als mit dem Stefan-Boltzmann-Gesetz berechnet. In höheren geografischen Breiten sowie winterlichen mittleren Breiten dagegen wird die Ortstemperatur durch den Zufluss von Energie gestützt:

Abbildung: Maximale theoretische Stefan-Boltzmann-Ortstemperatur im Äquinoktium (= Tag- und Nacht-Gleiche) vom Äquator (=0°) bis zu den Polen (90° Nord/Süd)

Die maximale Stefan-Boltzmann-Ortstemperatur sinkt vom Äquator (940 [W/m²] entsprechend ca. 86 [°C] oder 359 [Kelvin]) zu den Polen auf (0 [W/m²] entsprechend ca. -273 [°C] oder 0 [Kelvin]) ab. Bei etwa 70° nördlicher und südlicher Breite unterschreitet diese maximale Stefan-Boltzmann-Ortstemperatur die 0°C-Linie, und zwar ausdrücklich zur Tag- und Nacht-Gleiche. Dort befinden sich in etwa das Nordkapp (71° 1′ N, 25° 7′ O) und die Polarkreise (Nord und Süd) auf 66° 34′ N / S. Der Sonnenstand schwankt im Jahresverlauf zwischen den beiden Wendekreisen auf 23° 26‘ Nord (Nordsommer=Südwinter) und 23° 26‘ Süd (Südsommer=Nordwinter) um den Äquator. Insbesondere auf der jeweiligen Winterhalbkugel ist die Ortstemperatur in mittleren und höheren Breiten daher von der Energie-Verfrachtung aus niederen geografischen Breiten abhängig, denn sonst würde am Pol der Winterhemisphäre die Temperatur in die Nähe des absoluten Nullpunktes absinken. Dieser globale Wärmetransport in Atmosphäre und Ozeanen kostet natürlich Zeit. Bei den großen ozeanischen Strömungen spricht man von 100 Jahren und mehr.

Wenn also Energie in diesen Strömungen gespeichert wird und für ein Jahrhundert „unter Wasser verschwindet“, warum wird es dann auf der Erde nicht kälter? – Nun, die Antwort ist eigentlich ganz einfach: Unsere Erde ist ein „eingeschwungenes“ System.

Die 100 Jahre, die ein Umlauf in den großen ozeanischen Strömungen dauert, sind bereits bei deren Entstehung abgelaufen. Das bedeutet, gleichzeitig mit dem „Verschwinden“ von Energie in diesen ozeanischen Strömungen taucht im Mittel eine gleich große, vor 100 Jahren gespeicherte Energiemenge aus diesen Strömungen an anderer Stelle wieder auf. Und gleichzeitig mit der Verdunstung von Wasser kondensiert der vorher bereits entstandene Wasserdampf unter Abgabe von Energie an ganz anderer Stelle und regnet wieder ab.

Wir leben also in einer globalen energetischen „Durchschnittsbetrachtung“, wo all das vorstehend Beschriebene gleichzeitig passiert, wenn auch an ganz unterschiedlichen Orten.

Weiterführende Links zu meinem hemisphärischen Stefan-Boltzmann-Modell:

Eine noch einfachere Beschreibung: https://eike-klima-energie.eu/2017/01/23/ueber-einen-vergeblichen-versuch-unsere-welt-vor-der-dekarbonisierung-zu-retten/

Ein Modellvergleich mit der Temperatur auf dem Mond: https://eike-klima-energie.eu/2017/07/02/beweist-die-temperatur-des-mondes-den-hemisphaerischen-stefan-boltzmann-ansatz/

Zur Energiespeicherung in Atmosphäre und Ozeanen: https://eike-klima-energie.eu/2019/07/29/safety-first-zum-besseren-verstaendnis-meiner-hemisphaerischen-energiebilanz/

Die genaue S-B-Berechnung für die Tagseite der Erde: https://www.eike-klima-energie.eu/2019/09/11/anmerkungen-zur-hemisphaerischen-mittelwertbildung-mit-dem-stefan-boltzmann-gesetz/

Vergleich der Treibhaustheorien, Teil 1 Gegenüberstellung: https://www.eike-klima-energie.eu/2019/12/02/eine-analyse-der-thesen-antithesen-fuer-einen-natuerlichen-atmosphaerischen-treibhauseffekt-teil-1-gegenueberstellung-der-thesen-antithesen/

Vergleich der Treibhaustheorien, Teil 2 Diskussion: https://www.eike-klima-energie.eu/2019/12/03/eine-analyse-der-thesen-antithesen-fuer-einen-natuerlichen-atmosphaerischen-treibhauseffekt-teil-2-diskussion-der-thesen-antithesen/

Vergleich der Treibhaustheorien, Teil 3 Erkenntnisse: https://www.eike-klima-energie.eu/2019/12/04/eine-analyse-der-thesen-antithesen-fuer-einen-natuerlichen-atmosphaerischen-treibhauseffekt-teil-3-erkenntnisse-zu-den-thesen-antithesen-und-das-ergebn/


Bücher

Allgemeine Kritik am Klimawahn: Klimahysterie gefährdet die Freiheit – ISBN-13: 9783744835602

Zusammenstellung von Artikeln gegen den Klimawahn: Klima-Mord – Der atmosphärische Treibhauseffekt hat ein Alibi – ISBN-13: 9783744837279

Mein hemisphärisches S-B-Modell: Die hemisphärische Stefan-Boltzmann Temperatur unserer Erde – ISBN-13: 9783752870343

Wissenschaftliche Veröffentlichungen: Mehr geht nicht – Ein klimawissenschaftliches Vermächtnis – ISBN-13: 9783744818513

Hier der Link für den gesamten Beitrag als pdf.

https://eike-klima-energie.eu/wp-content/uploads/2023/06/2023-06-28-TEIL12-Der-Kuechenherd-und-die-Anwendung-von-S-B-uw.pdf




Faktencheck: Drei Modelle für die Temperaturgenese auf unserer Erde

von Uli Weber

Als Modell gilt in der Wissenschaft eine mehr oder minder umfangreiche Abbildung der Wirklichkeit (Zitat Wikipedia). Wenn wir diese Definition einmal umkehren, dann kann ein Etwas, das nicht irgendwie in der Wirklichkeit verankert ist, kein Modell der selbigen sein, sondern beispielsweise Science Fiction. Nun hatte sich in der Kommentarfunktion zu dem EIKE-Artikel „Neue Studie: Ein ‚Denkmodell‘, das von einem ‚natürlichen Treibhauseffekt‘ von 33 K ausgeht, ist eine ‚wertlose‘ Behauptung“ der Lead-Autor selbiger Studie bitterlich über meinen Modellvergleich „Verbesserungswürdig: Über fehlerhafte Ansätze für eine breitenabhängige Globaltemperatur“ auf EIKE (nachfolgend = Weber 2020) beklagt, Zitat Kramm am 5. Januar 2023 um 21:13 Uhr:

Wenn Sie glauben, nach dem Motto „Calumniare audacter, semper aliquid haeret“ eine Vielzahl von frei erfundenen Behauptungen  und Falschaussagen zu den  Arbeiten verbreiten zu koennen, die ich zusammen mit Fachkollegen angefertigt habe, um Zweifel an meiner Kompetenz zu schueren, dann nehme ich das nicht hin.“
(Alle Kramm-Zitate in diesem Artikel aus der Kommentarfunktion von „Neue Studie: …“)

Um zunächst einmal der Freiheit von Meinung und Information Genüge zu tun, finden Sie meinen knapp 8-seitigen EIKE-Artikel „Weber (2020)“ unter dem obigen Link und Kramms 35-seitige Entgegnung hier.

Dem Angebot des EIKE-Admins vom 5. Januar 2023 um 22:08 Uhr, eine Widerlegung meiner Ergebnisse auf diesem Blog zu veröffentlichen, ist Kramm bisher nicht nachgekommen. Vielmehr hatte Kramm diesen Vorschlag bereits am 6. Januar 2023 um 12:45 Uhr mit einem Kommentar @Admin zurückgewiesen. Daher stelle ich mich jetzt umgekehrt Kramms Kritik und werde nachfolgend die Richtigkeit meines Modells und meiner Analysen gegenüber dessen Zitaten nachweisen. Zur Diskussion stehen damit folgende Modelle:

  1. Das herkömmliche globale Faktor4-Tag=Nacht-THE-Modell mit seinem globalen [-18°C]-Ansatz aus einer physikalischen Fehlanwendung des Stefan-Boltzmann-Gesetzes.
  2. Das breitenabhängige Temperaturmodell von Kramm et al. (2017), in dem sich Kramm mit einem Faktor4-Tag=Nacht-Ansatz für eine „Erde ohne Atmosphäre“ auf die Arbeiten von hochrangigen Physik-Koryphäen aus dem 19. und 20. Jahr­hundert stützt.
  3. Mein hemisphärisches Stefan-Boltzmann-Modell für die Temperaturgenese auf unserer realen Erde, bei dem ich mich auf die zwingende Gleichzeitigkeit von Temperatur und Strahlung im Stefan-Boltzmann-Gesetz sowie die jahrtausendealten Kenntnisse der Landbevölker­ung über die Existenz von Tag und Nacht berufe.

Modell (A): Am 5. Januar 2023 um 21:13 Uhr behauptet Gerhard Kramm unter Punkt 1, Zitat mit Hervorhebungen:

Es ist also in der Fachliteratur ueblich, entweder die ortsabhanegige taegliche solare Einstrahlung oder die ortsabhaengige mittlere taegliche solare Einstrahlung zu veranschaulichen. In den beiden obigen Diagramm sind jeweis die geographische und jahreszeitliche Verteilung der mittleren taeglichen solaren Einstrahlung dargestellt. Die zugehoerige taegliche solare Einstrahlung liefert das gleiche Muster der Verteilung, denn alle Werte der mittleren taeglichen solaren Einstrahlung muessen nur mit 86400 s. multipliziert werden. Sie streiten diese Verteilung der taeglichen solaren Einstrahlung ab.

Die globale Mittelung ueber diese geographische und jahreszeitliche Verteilung der solaren Einstrahlung liefert das seit Meech (1857) und Wiener (1877, 1879) bekannte Ergebnis, dass das globale Mittel der solaren Einstrahlung dem vierten Teil der Solarkonstanten entspricht. Die numerischen Simulationen von Kramm et al. (2017) lieferten fuer das Jahr 2010 ein globales Mittel von 340,2 W/m². Die verwendete Solarkonstante betrug 1361 W/m². Der Quotient 340,2/1361 betraegt 0.24996.“

Ich kann mich zwar nicht auf Meech (1857) und Wiener (1877, 1879) -(sowie Milanković (1920, 1941) bei Kramm et al. (2022))- berufen, habe aber den herkömmlichen Faktor4-Ansatz mit einer globalen Durch­schnittstemperatur von [-18°C] zuletzt in meinem EIKE-Beitrag „Schwarzschild und die Lösung der Strahlungstransfer­gleichung – ein physikalischer Hütchentrick?“ ausführlich widerlegt.

Die Situation beim herkömmlichen Faktor4-Ansatz stellt sich folgendermaßen dar:

Der Faktor4-Ansatz benötigt einen sogenannten „natürlichen atmos­phärischen Treibhauseffekt“, um die sogenannte „gemessene globale Durchschnittstemperatur“ zu erklären. Dazu ist wiederum eine sogenannte „atmosphärische Gegenstrahlung“ erforderlich, zu deren Entstehung sie selber beitra­gen muss. Dieser Mechanismus ist vergleichbar mit dem Chuck-Norris-Paradoxon, der in einem Blockhaus geboren worden sein soll, das er selber erbaut hatte. Denn selbst die THE-Anhänger wissen es besser, was die nachstehende Abbildung beweist:

Abbildung 3.34 von Seite 51 aus „Physik der Atmosphäre“ von Niklaus Kämpfer

Zwischen der „einfallenden Sonnenstrahlung“ und der „ausgehenden Infrarot-Strahlung“ liegt nämlich die terrestrische Temperaturgenese. Denn ein Vektor ändert nicht freiwillig seine Richtung. Es wird hier ganz deutlich, dass sich das Strahlenbündel der einfallenden Solarstrahlung auf eine Kreisfläche (PiR²) mit dem Erdradius R beschränkt. Die Abstrahlung erfolgt dann über die gesamte Erdoberfläche (4PiR²). Aber die Temperaturgenese, bei der sich die Richtung des Poynting-Vektors vom solaren Einfall zur terrestrischen Abstrahlung umkehrt, findet ausschließlich auf der Taghemisphäre (2PiR²) unserer Erde statt. Die Abbildung 3.34 entspricht also prinzipiell meinem hemisphärischen Stefan-Boltzmann-Modell.

Ergebnis für Modell (A): Selbstverständlich bestreite ich, dass die Sonne hier auf der Erde Tag und Nacht mit gemittelter halber Strahlstärke scheint. Denn für das, was am Ende nach Anwendung der Strahlungstransfergleichung ‘rauskommt (Abstrahlung) ist entscheidend, was da vorher auf der Tagseite als Eingangsgröße überhaupt an Sonnenstrahlung ‘reingegangen (Einstrahlung) ist. Und da ist der globale Faktor4-Ansatz halt ungenü­gend, denn wenn nur die Hälfte ‘reingeht (Faktor4 anstatt Faktor2), kann dabei auch nur die Hälfte ‘rauskommen (235W/m² anstatt 470W/m²).

Anmerkung: Auch hier wird wieder mit den in der Klimawissenschaft offenbar üblichen Durchschnittswerten argumentiert, was bei einer T-hoch-4-Funktion physikalisch nicht korrekt ist. Für detaillierte Angaben sei auf meinen Artikel „Anmerkungen zur hemisphärischen Mittelwertbildung mit dem Stefan-Boltzmann-Gesetz“ verwiesen.

Modell (B): Weiter geht es nun mit Kramm et al. (2017), die einem verfeinerten Faktor4-Ansatz folgen (Quotient = 0,24996 anstelle von 0,25), aus dem sich eine breitenabhängige Temperaturverteilung mit den Maxima am Pol der jeweiligen Sommerhemisphäre herleitet. In seiner E-Mail vom 29.01.2021 um 09:58 Uhr* an mich und den üblichen Skeptiker-Email-Verteiler hatte Dr. Gerhard Kramm ein PDF-Dokument „kramm_bemerkungen_weber_v3.pdf“ (in der Folge „Kramm (2021)“) mit einem direkten Temperaturvergleich zwischen meinem hemisphärischen S-B-Modell und seiner „Erde ohne Atmosphaere“ verschickt. Wie erwartet spiegeln die Beleuchtungsklimazonen (Definition) unserer Erde den Verlauf der maximalen örtlichen solaren Strahlungsleistung und zeigen keinerlei Hotspot am Pol der Sommerhemisphäre. Diese Beleuchtungsklimazonen sind in der nachfolgenden Abbildung (hier finden Sie die Originaldarstellung) als Overlay über die beiden genannten Modelle projiziert worden:

https://eike-klima-energie.eu/wp-content/uploads/2022/07/word-image-94764-6.jpegAbbildungen a* und b* aus Kramm (2021): Der Modellvergleich aus dem PDF-Dokument von Kramm (2021)* mit jeweils einem Overlay der Beleuchtungsklimazonen (Quelle: Wikipedia, Autor: Fährtenleser, Lizenz: GNU Free Documentation License)

(a [links]) Maxima nach Weber, beginnend mit dem 1. Januar 2000, 12:00 Uhr (JD = 2451545)

(b [rechts]) Tägliche Mittelwerte nach Kramm et al. (2017), beginnend mit 1.Januar 2010, 00:00 Uhr (JD =2455197,5)

Anmerkung: Die Overlays der Beleuchtungsklimazonen sind gegenüber den Modellen a und b nicht flächentreu

Vorläufiges Ergebnis: Bekanntermaßen ist die temperaturbestimmende spezifische solare Strahlungsleistung in den Tropen nun einmal am höchsten (Abbildung a*) und fällt dann zu den Polarregionen kontinuierlich ab, wie es auch die Overlays der Beleuchtungsklimazonen in den Abbildungen a* und b* prinzipiell zeigen. Es ist demnach unschwer zu erkennen, welche Grafik ein physikalisches Modell unserer Erde darstellt (mein hemisphärisches S-B-Modell) und welche Grafik mit einem Wärmepol auf der Sommerhemisphäre (Kramm et al. 2017) reine Science-Fiction ist.

Komplikation: Kramm hält der Analyse in meinem Artikel „Verbesserungswürdig: Über fehlerhafte Ansätze für eine breitenabhängige Globaltemperatur“ (Weber 2020) nun entgegen, Zitat aus seinem Kommentar vom 6. Januar 2023 um 17:53 Uhr mit Hervorhebungen:

Zur Bewertung der geographischen und jahreszeitlichen Verteilung der „slab“-Temperatur im Falle einer Erde ohne Atmosphaere nach Abbildung 22 (a) vonKramm et al. (2017) war nicht die Verteilung der solaren Einstrahlung nach Abbildung 22 (b) erforderlich, auf die Sie sich berufen haben, sondern die entsprechende Verteilung der absorbierten solaren Strahlung in Abbildung 22 (c), die Sie durch Vertuemmeln der Abbildung 22 weggelassen haben. Da Sie auch die Bildunterschrift verstuemmelt haben, darf man wohl vorsaetzliches Faelschen unterstellen. Und nun wollen Sie sich damit rausreden, dass Sie ja gar nicht die Abbildungen 22 (c) – (e) erwaehnt haetten. Fuer wie dumm halten Sie eigentlich die Foristen?

Naja, zumindest die MEISTEN halte ich für schlau genug, um nicht JEDEM ALLES zu glauben: Sehr erstaunlich ist nämlich, dass die Abbildung 22 (a) bis (e) von Kramm et al. (2017) jetzt von Kramm et al. (2022) als Abb. 2 (a) und (b) „verstuemmelt“ wiederverwendet wurde, und zwar ohne die konkreten Aussagen des verantwortlichen Lead-Autors in der oben zitierten Kommentierung bezüglich der Verbindung zwischen den Abb. 22 (a) und 22 (c) berücksichtigt zu haben. Im Gegenteil wird dort ohne eine dahingehend erforderliche Erklärung die Abb. 22 (a) direkt und eindeutig der Abb. 22 (b) gegenübergestellt:

“Copyright ⓒ 2022 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).”

Anmerkung: Diese Abbildung 2 aus Kramm et al. (2022) zeigt, bis auf eine etwas ausführlichere Bildunterschrift, exakt die von Kramm kritisierte Abbildung 22 (a) und 22 (b) aus Weber (2020), die ebenfalls aus Kramm et al. (2017) stammt.

In meinem Artikel „Verbesserungswürdig: Über fehlerhafte Ansätze für eine breitenabhängige Globaltemperatur“ (Weber 2020) hatte ich mich folgendermaßen über die Abbildungen [22 (a) und (b) von Kramm et al. (2017) = 2 (a) und (b) von Kramm et al. (2022)] geäußert, Zitat:

In der Abbildung 22a von Kramm et al. (2017) weist die rote Farbgebung nun eine Maximaltemperatur zwischen 280K und 300K für den jeweiligen Pol der Sommerhemisphäre aus. Diese Temperaturspanne entspricht jedoch nicht der entsprechenden spezifischen Strahlungsleistung aus Abbildung 22b mit mehr als 500W/m² (Nordpol) respektive mehr als 550W/m² (Südpol). Denn damit müssten die Ortstemperaturen an den Polen der Sommerhemisphäre in Abbildung 22a deutlich mehr als 300K betragen. Daher können die Temperaturen in Abbildung 22a eindeutig nicht aus den Strahlungswerten von Abbildung 22b hergeleitet worden sein. Sicherlich wird der verantwortliche Lead-Autor diesen Widerspruch mit dem ihm eigenen Charme durch eine plausible physikalische Erklärung auflösen können, die seinen hohen wissenschaftlichen Ansprüchen gerecht wird. Bis dahin bleibt nur der hinreichende Verdacht, dass beim Datensatz für die Strahlungsleistung in Abbildung 22b eine Verwechslung mit den Grunddaten @TOA vorliegen muss.“

Die Temperatur in Abb. 22 (a) hat ihr Maximum um den jeweiligen Sommerpol, genauso wie die solare Einstrahlung in Abbildung 22 (b), während die Grafik 22 (c) ihre Maxima auf der Nordhemisphäre zwischen ca. 30°N und 50°N hat. Im Sommer der Südhemisphäre reicht das Maxima der Grafik 22 (c) sogar vom Südpol bis in die Tropen. Die nachfolgende Abbildung 22 (a) bis (c) mit einem Overlay der Temperatur-Grafik 22 (a) verdeutlicht diese Situation:

Kramm et al. (2017): “Figure 22. Daily mean values of (a) slab temperature; (b) solar radiation reaching the Earth’s surface; (c) absorbed solar radiation, where the local solar albedo has been predicted by Equation (6.3); as predicted for one year starting with TDB = 2,455,197.5 (January 1, 2010, 00:00 UT1)
Grafiken (b), und (c) mit einem Overlay von Grafik 22(a) mit dem Faktor4-Temperaturmodell

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

Das Maximum der Absorption (c) verschiebt sich also vom polaren Maximum der mittleren täglichen solaren Einstrahlung (b) weg in Richtung auf die Tropen. Bei der Berechnung der Temperatur (a) wäre nach Kramms Kommentar also ein zu (c) kongruentes Temperaturmuster zu erwarten. Stattdessen soll dann bei der Temperaturberechnung ausgerechnet eine gegensinnige Rückverschiebung der entsprechenden Temperaturmaxima aus (c) kongruent zu (b) in Richtung auf die Pole erfolgt sein? – Ja, wer glaubt denn sowas! Der vom verantwortlichen Lead-Autor vorgegebene Zusammenhang zwischen der spezifischen Strahlungsleistung der absorbierten Strahlung und der Temperatur [(c) => (a)] in der Abbildung 22 von Kramm et al. (2017) kann also nicht sinnhaft nachvollzogen werden.

Der Schluss, dass die Grafik 2 (a) aus der tagesdurchschnittlichen solaren Strahlungsleistung 2 (b) abgeleitet worden sein muss, ist jetzt also durch das Fehlen der 2017er-Grafik 22 (c) bei Kramm et al. (2022) zwingend geworden.

Jedenfalls lassen die Autoren diesen klaren Eindruck für den Betrachter so stehen, obwohl die Temperaturen in Abb. 2 (a) und die zugehörigen Strahlungsleistungen in Abb. 2 (b) vom Betrag her einfach nicht zueinander passen. Trotzdem bestätigen Kramm et al. (2022) eine Ableitung der Temperaturen 2 (a) aus der tagesdurchschnittlichen Einstrahlung 2 (b) ausdrücklich, indem sie zu ihren Abbildungen 1 bis 3 angeben, Zitat von Seite 388 (unten) mit Hervorhebungen:

As illustrated in Figures 1-3, the distribution of the surface temperature on a planet or a natural satellite (like Earth’s Moon or Jupiter’s Galilean moon Io) in the absence of an atmosphere is non-uniform. As outlined by von Hann, this distribution of the surface temperature is mainly governed by the solar insolation defined as the flux of solar radiation per unit of horizontal area for a given location [8].”

Dieser klaren Aussage aus Kramm et al. (2022) widerspricht nun Kramm selbst in seinem aktuellen Kommentar diametral. Zur Erinnerung noch einmal Kramms Zitat aus seinem Kommentar vom 6. Januar 2023 um 17:53 Uhr mit Hervorhebungen:

Zur Bewertung der geographischen und jahreszeitlichen Verteilung der „slab“-Temperatur im Falle einer Erde ohne Atmosphaere nach Abbildung 22 (a) vonKramm et al. (2017) war nicht die Verteilung der solaren Einstrahlung nach Abbildung 22 (b) erforderlich, auf die Sie sich berufen haben, sondern die entsprechende Verteilung der absorbierten solaren Strahlung in Abbildung 22 (c), die Sie durch Vertuemmeln der Abbildung 22 weggelassen haben.

Es liegen von Kramm et al. (2022) und Kramm selbst also diametral gegenteilige Erklärungen darüber vor, wie und aus welchen Strahlungswerten die in Abbildung 22 (a) / 2 (a) dargestellten Temperaturen tatsächlich berechnet worden sind. Offenbar sind aber beide Aussagen falsch, weil die Temperaturwerte in Abb. 22 (a) / 2 (a) nach der hier dargelegten Indizienlage aus dem Datensatz der Abb. 22 (b) / 2 (b) durch Reduzierung um eine konstante Albedo entstanden sein müssen.

Wenn also bisher noch kein Korrigendum für die Abbildung 22 aus Kramm et al. (2017) erfolgt sein sollte, dann ist es jetzt mit der Abbildung 2 aus Kramm et al. (2022) aber wirklich allerhöchste Zeit. Die Indizienlage gegen das Temperaturmodell von Kramm et al. (2017) ist erdrückend, aber trotzdem gilt selbstverständlich weiterhin die Unschuldsvermutung dahingehend, dass die Aussagen des verantwortlichen Lead-Autors bezüglich der Temperaturberechnung [22 (c) => 22 (a)] aus Kramm et al. (2017) trotz des Widerspruchs [2 (b) => 2 (a)] aus Kramm et al. (2022) beweisbar sein könnten. Dieser möge daher die vorliegenden Indizien einfach durch einen qualifizierten Kommentar zu dem Widerspruch

[22(c)=>22(a)@Kramm] # [2(b)=>2(a)@Kramm et al. (2022)] = beides falsch (Weber)

ausräumen – aber bitte höflich, sachlich, allgemeinverständlich und nicht überschäumend länglich.

Ergebnis für Modell (B): Die Klimarealisten sollten aufpassen, mit welchen Temperaturmodellen sie in der Diskussion um unsere industrielle Zukunft auftreten. Das Kramm’sche Modell ist dafür gänzlich ungeeignet, weil es eine inverse Welt darstellt. Abgesehen davon ist mir bisher keine bestätigende breitenabhängige Temperaturverteilung mit einem Hotspot auf dem jeweiligen Sommerpol bekannt geworden. Und dieses Modell von Kramm et al. (2017) wird dadurch auch nicht besser, dass man es immer wieder neu veröffentlicht.

Modell (C): Von den konkurrierenden theoretischen Temperaturmodellen für unsere reale Erde wird der natürliche Verlauf der Beleuchtungsklimazonen also lediglich von meinem hemisphärischen S-B-Modell (Abb. a*) sinnstiftend abgebildet:

Abbildung: Vergleich des hemisphärischen S-B-Modells mit den Beleuchtungsklimazonen der Erde

Links: Das hemisphärische S-B-Modell aus dem Modellvergleich von Kramm (2021)*
Text: Maxima nach Weber, beginnend mit dem 1. Januar 2000, 12:00 Uhr (JD = 2451545)

Rechts: Beleuchtungsklimazonen der Erde (N-S gestreckt)
Quelle: Wikipedia, Autor: Fährtenleser, Lizenz: GNU Free Documentation License)

Ergebnis für Modell (C): Allein mein hemisphärisches Stefan-Boltzmann-Modell ist in der Lage, die terrestrische Temperaturgenese räumlich und zeitlich korrekt abzubilden, und zwar ohne auf einen sogenannten „natürlichen atmosphärischen Treibhauseffekt“ zurückgreifen zu müssen. Dieses Modell kann sowohl die „gemessene“ globale Temperatur auf der Tagseite unserer Erde über eine korrekte S-B-Berechnung erklären, als auch die Nachttemperatur über die S-B-Umgebungsgleichung und den Wärmeinhalt der globalen Zirkulationen.

Fazit dieses Faktenchecks: Der Faktor4-Ansatz für die Sonneneinstrahlung auf unserer Erde ist falsch, denn darauf beruht die Sage vom „natürlichen atmosphärischen Treibhauseffekt“. Mein hemisphärisches S-B-Modell ersetzt als realistisches Modell unserer Erde ohne THE sowohl den konventionellen Faktor4-Tag=Nacht -Ansatz der real existierenden Klimawissenschaft mit einem fehlerhaft konstruierten globalen „natürlichen atmosphärischen Treibhauseffekt“ von konstant 33°C, als auch das Modell einer jahreszeitlich variablen breitenabhängigen Durchschnittstemperatur von Kramm et al. (2017) / Kramm et al. (2022) mit seinem polar beheizten inversen Temperaturmodell für unsere Erde, wie die nachfolgende Tabelle beweist:

C:\Users\Uli\Documents\Ablage & Archiv\Veröffentlichungen\2020\2020-11-13 Lüdecke\Data\Tabelle Inversionen-rev4B&W.jpgTabelle: Vergleich zwischen meinem hemisphärischen S-B-Modell und dem herkömmlichen Faktor4-Tag=Nacht-THE-Ansatz, womit sich Letzterer erledigt hat. Eine Diskussion dieser und weiterer Ansätze ist in „Eine Analyse der Thesen/Antithesen für einen ‚natürlichen atmosphärischen Treibhauseffekt‘“ – Teil-1Teil-2Teil-3 – nachzulesen.

 


*) Erklärung: 
Um jedweden Beschwerden vorzubeugen, bestätige ich hiermit, ein direkter „An“-Adressat der o. g. E-Mail vom 29. Januar 2021 um 09:58 Uhr mit Kramms PDF-Dokument „kramm_bemerkungen_weber_v3.pdf“ und den dort enthaltenen Abbildungen 15 a und b (hier Abbildungen a und b aus Kramm (2021)) zu sein, ebenso, wie u. a. auch die Herren Lüdecke, Limburg und Kirstein. Ich beweise nachfolgend mit der „Confidentiality Warning“ des Dr. Gerhard Kramm die rechtmäßige Nutzung dieser Graphiken, Zitat:

“CONFIDENTIALITY WARNING: The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking any action in reliance upon, this information by persons or entities other than the intended recipient is prohibited. If you receive this in error, please contact the sender and delete the material from any computer.”

Der unbestechliche Google-Übersetzer bestätigt mir ausdrücklich, die Inhalte der besagten E-Mail Kramm vom 29. Januar 2021 um 09:58 Uhr rechtmäßig zitiert zu haben:

„VERTRAULICHKEITSWARNUNG: Die übermittelten Informationen sind nur für die Person oder Organisation bestimmt, an die sie gerichtet sind, und können vertrauliches und / oder privilegiertes Material enthalten. Jegliche Überprüfung, Weiterverbreitung, Verbreitung oder sonstige Verwendung oder Ergreifung dieser Informationen durch andere Personen oder Organisationen als den beabsichtigten Empfänger ist untersagt. Wenn Sie dies irrtümlich erhalten, wenden Sie sich bitte an den Absender und löschen Sie das Material von einem beliebigen Computer.“

ERGO: Es verbleiben für eine erlaubte „Überprüfung, Weiterverbreitung, Verbreitung oder sonstige Verwendung oder Ergreifung dieser Informationen“ ausschließlich die von Dr. Kramm „beabsichtigten Empfänger“, und ich bin definitiv der ERSTE „AN“-EMPFÄNGER dieser E-Mail.

 




Kritisches Hinterfragen des IPCC Basis Modell KT97, seines atmosphärischen Treibhauseffektes, seiner Ableitung von CO2 mit einem Strahlungsantrieb von 32 W/m² und seiner politischen Dimension

Ein seit ca. 1850 von Klimawissenschaftlern weltweit beobachteter Temperaturanstieg von ca. 1.2 K wird auf den Ausstoß von Treibhausgasen, allen voran auf CO2 zurückgeführt.

Vom IPCC gesammelt veröffentliche Computer Szenarien basieren auf Modellen mit einem atmosphärischen Treibhauseffekt von 33 K. Diesen formulierte als einer der ersten in den 1980-ziger Jahren der NASA Wissenschaftler B. Barkstrom mit Kollegen auf Grundlage von selektiv ausgesuchten Satellitenmesswerten (ERBE Satellitenprogramm der NASA, Messung der ein/abgestrahlten Energie).

In ihrer energetischen Bilanzbetrachtung der Erde wurde die solare Einstrahlung von 1368 W/m² der Sonne, wie so oft, auf die gesamte Erdhülle über den Faktor 1/4 (da die Sonne auf eine virtuelle Kreisfläche strahlt, und die Kugeloberfläche mit dem gleichen Radius 4 x größer ist) verteilt. Die Wissenschaftler Kiehl und Trenberth übernehmen das Modell und verfeinern es.

Bei diesem Vorgehen kann aber nur etwa die Hälfte der vorhandenen Messwerte (BSP. ERBS Satellit des ERBE Programm) im Modell dargestellt werden. Aber selbst die wenigen im Modell verwendeten Werte, weichen zusätzlich noch von den Satellitenwerten in erheblichen Umfang ab, beispielsweise Modellwert und Messwert der Albedo, obwohl sich ihre Modelle auf Satellitenmesswerte, insbesondere das ERBE NASA Programm berufen.

Bereits kleine Abweichungen haben aber große Auswirkungen. Die Folge des Ansatzes von nur eines Teils, weil lediglich der Hälfte der Messwerte, verursacht daher in derartigen Bilanzmodellen ein erhebliches Energiedefizit. Die fehlende Energie führt zu einer sehr geringen Abstrahleistung der Erde von nur 235 W/m². Diese entspricht über das Stefan Boltzmann Gesetz einer Temperatur von -18 Grad Celsius in der oberen Atmosphäre. Gibt es keine Strahlungsbehinderung in der Atmosphärenhülle, so müssste die Erdoberfläche auch auf -18 Grad Celsius abkühlen und die Erde ein Eisball sein. Wir „messen“ aber global ca. +15 Grad Celsius.

 

Um diesen offensichtlichen Widerspruch logisch aufzulösen, postulierte oder rief Barkstorm einen sogenannten atmosphärischen Treibhauseffekt von 33 Grad Celsius aus. Dieser soll von unsymmetrischen Gas-Molekülen durch eine Gegenstrahlung von 324 W/m² verursacht werden. Tatsächlich werden in geringem Maße unsymmetrische atmosphärische Molekühle von Strahlung angeregt. Durch Stöße oder auch Abstrahlung geben sie diese Energie wieder ab.

Man kann zeigen, um +15 Grad Celius im Modell als Oberflächentemperatur zu erreichen, verändern Kiehl und Trenberth jedoch hierzu die physikalisch/chemischen Eigenschaften von CO2. Sie machen aus einem Gas, ein diskontinuierlicher Abstrahler, einen Kontinuums- oder Festkörperstrahler mit einer Abstrahlleistung von bis zu 32 W/m². Dies ist nach Meinung des Autors nicht richtig, da hierbei nicht strahlende Bereiche für den gesamten Temperaturbereich von -18 bis +15 Celsius im Abstrahlspektrum mit eingerechnet wurden.

Schematische Darstellung der 1/4 Verteilung der solaren Einstrahlung auf die Erdkugel. Bild EIKE

Außerdem bezieht die 1/4 Verteilung der solaren Einstrahlung auf die gesamte Atmosphärenhülle stets die kalte Nachtseite mit ein und entspricht einem solaren Modell mit 2 Sonnen, halber Abstrahleistung und die Erde in Ihrer Mitte. Zusätzlich widerspricht dies der korrekten Anwendung des Stefan-Boltzmann Gesetzes.

Ein Modell mit dem Verteilungsfaktor 1/2, auf Basis der Energiebeträge der gesamten Messreihe des Satelliten ERBS im 5-jährigen Durchschnitt, liefert hingegen eine deutlich höhere Abstrahlleistung der Erde von durchschnittlich 500 W/m². Es gibt bei diesem Verteilungsansatz daher keine Strahlungsbehinderung der Atmosphäre, wie von Barkstorm seinerzeit postuliert. Damit entfällt die Notwendigkeit eines Treibhauseffektes von 33K und die Kopplung der Temperatur an den CO2 Gehalt.

CO2 strahlt, aber vernachlässigbar wenig. Da IPCC Szenarien den barkstormschen Treibhauseffektes nachmodellieren, errechnen diese am Computer zwangsläuffig Horrorszenarien mit weitreichenden, politischen Auswirkungen. Ein Modell mit dem Verteilungsfaktor 1/2 führt die globale Erwärmung von ca. 1.2 Grad Celsius auf eine langfristige Bewölkungsänderung von ca. 3.6 % zurück. Dies zeigen die Messwerte der Satelliten TERRA und AQUA und finden in den langen Zeitreihen der Albedo für Europa (Quelle Deutscher Wetterdienst) auch für Europa ihre Bestätigung.

Setzte man dann in das Modell von Kiehl und Trenberth, 1997, mit 1/4 Verteilung und unter Ansatz der Gegenstrahlung von 324 W/m², statt der Modellalbedo von 0.31, den Albedo Satellitenmesswert von ERBS mit 0.27 ein, so errechnete sich, statt 14.8 Grad Celsius, eine mittlere Globaltemperatur von 17,6 Grad Celsius. Dies aber wäre falsch und führt bereits den Pariser Klimaakkord ad absurdum, obwohl dort keine eine Bezugstemperatur für die Begrenzung der Erderwärmung genannt ist.

Die obige Darstellung wird mit umfangreichen mathematisch physikalischen Nachweisen im angehängten  Artikels Verlinkung zur PDF Datei ausführlich begründet

Langversion des Artikels Kritisches Hinterfragen des IPCC Basis Modell KT97 von A.Agerius 2020.

Folgt man dieser, dann besteht für Klima Alarmismus nach Meinung des Autors kein Anlass.




Machen wir mal ein Gedanken­experiment: Es gibt gar keine Erde!

  • Die Erde hat zwar ein heißes Inneres, aber der Wärmestrom an ihrer Oberfläche ist äußerst gering. Auch die Gezeitenreibung liefert keine klimawirksame Energie. Die alleinige „natürliche“ Eigentemperatur der Erde würde vielmehr bei etwa minus 240 Grad Celsius  liegen. Die Erde selbst ist also primär an der Temperaturgenese auf ihrer Oberfläche nicht beteiligt.
  • Die Sonne ist der bestimmende Energielieferant für die Temperatur- und Klimagenese auf unserer Erde; die Sonne ist also ihr eigentlicher Klimamotor.
  • Und das Stefan-Boltzmann-Gesetz beschreibt den physikalischen Zusammenhang von Strahlung und Temperatur.

Das Stefan-Boltzmann-Gesetz kann also, bei richtiger Anwendung, zur Beschreibung der Temperatur- und Klimagenese unserer Erde dienen. Es beschreibt für einen Schwarzen Körper den in Abbildung 1 dargestellten physikalischen Zusammenhang von Strahlung und Temperatur im thermischen Gleichgewicht:

Abbildung 1: Der Zusammenhang von Strahlung und Temperatur nach dem Stefan-Boltzmann-Gesetz

Das Gleichheitszeichen im Stefan-Boltzmann-Gesetz bedeutet aber leider nicht, dass man einfach irgendwelche Durchschnittswerte in dieses physikalische Gesetz einsetzen darf, um die Situation auf der Erde zu beschreiben, denn dieses S-B Gesetz ist eben ein Gesetz und keine Gleichung. Es stellt vielmehr einen direkten physikalischen Bezug von singulären Strahlungs- und Temperaturwerten im gemeinsamen thermischen Gleichgewicht her. Und nur in diesem Gleichgewichtszustand entspricht ein konkreter Strahlungswert einer durch dieses Gesetz eindeutig definierten Temperatur nach der in Abbildung 1 dargestellten Funktion. Die jeweilige Temperatur muss also physikalisch konkret vorliegen, um den spezifischen Strahlungswert nach dem Stefan-Boltzmann-Gesetz zu erzeugen.

1. ERKENNTNIS: Berechnungen von und aus Durchschnittswerten sind mit dem Stefan-Boltzmann-Gesetz physikalisch nicht zulässig. Eine Berechnung von Mittelwerten kann vielmehr erst dann durchgeführt werden, wenn bereits für alle beteiligten Wertepaare von Temperatur und Strahlung eine individuelle Umrechnung nach dem Stefan-Boltzmann-Gesetz erfolgt ist. Grundvoraussetzung ist, dass diese Wertepaare in einer direkten physikalischen Beziehung miteinander stehen müssen.

Machen wir an dieser Stelle zunächst einmal ein Gedankenexperiment: Es gibt gar keine Erde!
Dazu verbringen wir zu einem Zeitpunkt “0” ein Duplikat unserer Erde aus einem Dunkelkammer-Weltraumlabor an den aktuellen Standort unserer Erde. Dieses Duplikat soll eine voll funktionsfähige Erde in einem „tiefgefrorenen“ Zustand mit einer Eigentemperatur von minus 240 Grad Celsius darstellen:

  • Nun setzen wir dieses Duplikat unserer Erde zum Zeitpunkt „0“ der Sonnenstrahlung aus und messen die Zeit „A“, bis die aktuelle Temperaturverteilung auf unserer Erde erreicht ist und alle atmosphärischen und ozeanischen Zirkulationen mit Wärmeenergie „aufgeladen“ sind. Dieser Zeitpunkt „A“ ist gekennzeichnet durch ein erstmaliges Gleichgewicht von eingestrahlter und abgestrahlter Energiemenge.
  • Nachdem dieser Gleichgewichtszustand erreicht wurde, verbringen wir das Duplikat unserer Erde zum Zeitpunkt „B“ wieder ins Labor und messen den Zeitraum „b”, bis wieder die ursprüngliche Ausgangstemperatur von etwa 240 Grad Celsius herrscht.

Wir werden dann herausfinden, dass beide Zeiten “A” und “b” größer als “Null” sind. Die Zeit “A” repräsentiert ein Maß für die Wärmekapazität unserer Erde, während die Zeit “b” ein Maß für die Qualität der thermischen Isolierung unserer Erde gegen das Weltall darstellt. „A“ und „b” repräsentieren in erster Näherung einen Zeitraum von Jahrhunderten bis Jahrtausenden. Das Stefan-Boltzmann-Gesetz gilt aber nur in einem thermischen Gleichgewichtszustand zwischen Strahlung und Temperatur, also im Zeitraum „t“ mit (A < t < B). In einem solchen Gleichgewichtszustand spielt aber die Wärmekapazität zunächst keine Rolle. Die einzige temperaturbestimmende Einflussgröße im thermischen Gleichgewichtszustand auf unserer Erde ist damit die eingestrahlte Energie von der Sonne in [W/m²] auf der Tagseite. Wie groß der Energieinhalt des Systems Erde dabei wirklich ist und wie lange die Aufladung gedauert hat, ist dafür zunächst unerheblich, wenn wir diesen Zeitraum „t“ mit (A < t < B) betrachten.

Dieser statische Fall zeichnet sich offensichtlich durch eine relativ stabile globale Durchschnittstemperatur (NST=Near Surface Temperature) von 14,8 Grad Celsius aus. Die globalen Zirkulationen sind mit Energie „gesättigt“ und alle atmosphärischen und ozeanischen Prozesse sind in eine Art mittleren klimatischen Gleichgewichtszustand „eingeschwungen“ – das Wettergeschehen spiele in dieser Abstraktion keine Rolle. Bei einer solchen statischen Betrachtung ergeben sich dann folgende Rechengrößen:

Solarkonstante: 1.367 W/m²

Temperaturwirksame Sonneneinstrahlung: 940 W/m²

Durchschnittliche Abstrahlung nach Energiebilanz: 235 W/m²

Anmerkung: Um den Beweisweg nicht zu komplizieren, werden hier vereinfachte Werte zugrunde gelegt. Der hemisphärische Zweischichtfall für Atmosphäre und Oberfläche mit einer temperaturwirksamen Nettostrahlung von 780 W/m² wird hier nicht betrachtet.

Für eine hemisphärische Sonneneinstrahlung von 940 W/m² bei lotrechter Position der Sonne ergibt sich nach dem Stefan-Boltzmann-Gesetz dann eine maximale Gleichgewichtstemperatur von 85,7 Grad Celsius. Und eine beliebige örtliche SB-Maximaltemperatur lässt sich in Abhängigkeit von der geographischen Breite mit dem hemisphärischen S-B Ansatz folgendermaßen beschreiben:

S,Z = 940 [W/m²] * cos mit S,,Z = breitenabhängiger hemisphärischer Netto-Strahlungsantrieb im solaren Zenit und =auf den jahreszeitlichen Sonnenstand korrigierte Breite der Ortslage

Die aus dieser S-B Beziehung ableitbaren hemisphärischen S-B Gleichgewichtstemperaturen werden auf der Erde weder im Maximum noch im Minimum erreicht. Wenden wir uns daher zunächst einmal dem Mond als vergleichbarem Himmelskörper ohne Ozeane und Atmosphäre zu. Nachfolgend ist eine Abbildung dargestellt, die bereits auf EIKE veröffentlicht worden war:

Abbildung 2: Vergleich der gemessenen Oberflächentemperatur auf dem Mond (blau) mit der hemisphärischen S-B Gleichgewichtstemperatur (rot)

Blau: Gemessene Oberflächentemperatur auf dem Mond am Landeplatz von Apollo 15
Zugrunde liegt die Originalabbildung aus einem EIKE-Artikel (Primärquelle Eschenbach auf WUWT)

Rot: Verlauf der hemisphärischen S-B Gleichgewichtstemperatur für die geographischen Position des Apollo 15 Landeplatzes ohne Berücksichtigung der lunaren Achsenneigung mit den nachfolgenden Eckwerten:

Landepunkt von Apollo 15: Mond @ 26° 7′ 55.99″ N 3° 38′ 1.9″ E

Solarkonstante: 1.367 [W/m²]

Albedo des Mondes: 0,11

Temperaturwirksame Solarstrahlung: 1.217 [W/m²]

dito bei 26,125° geogr. Breite: 1.092 [W/m²]

Effektive Solarstrahlung Seff für α = [0° – 360°]: IF SIN α >0 THEN Seff = SIN α* 1.092 [W/m²]

IF SIN α <0 THEN Seff = 0 [W/m²]

Abbildung 2 zeigt, dass die gemessene und die hemisphärisch berechnete S-B Gleichgewichtstemperatur am Landepunkt von Apollo 15 bei Tage hervorragend überein stimmen, während die Nacht-Temperaturen um etwa 70 Grad differieren. Diese Differenz ist aber eher ein Problem zwischen Theorie und Praxis, denn in der S-B Berechnung wird für die Nachtseite des Mondes streng mit 0 [W/m²] gerechnet, während der Mond in der Realität reflektierte Sonnenstrahlung von der Erde erhält, deren Albedo immerhin etwa 30% betragt. Eine Temperatur von -196 °C entspricht nach Stefan-Boltzmann einer Strahlung von 2 {W/m²], wie Abbildung 1 erkennen lässt, und dafür dürfte die Rückstrahlung der Erde von etwa 400 [W/m²] allemal ausreichen.

2. ERKENNTNIS: Auf dem Mond funktioniert der hemisphärische S-B Ansatz ganz hervorragend, warum sollte er also für die Erde nicht anwendbar sein?

Im konventionellen S-B Ansatz wird eine globale Durchschnittstemperatur aus der durchschnittlichen Energiebilanz der Erde mit einem Viertel der wirksamen Solarkonstanten ermittelt. Wie wir bereits gesehen haben, „verkraftet“ das Stefan-Boltzmann-Gesetz solche Durchschnittswerte aber gar nicht.

Schauen wir aber trotzdem einmal näher hin und beschränken wir uns auf die Abstrahlung:
Die durchschnittliche globale Abstrahlung unserer Erde kann in erster Näherung unter Berücksichtigung der Albedo tatsächlich mit einem Viertel der temperaturwirksamen netto-Sonneneinstrahlung von 235 W/m² beschrieben werden, auch wenn sie in Wahrheit sicherlich tages- und jahreszeitlichen sowie breitenabhängigen Schwankungen unterworfen ist.

Nur zur Erinnerung: Diese Betrachtung der Erde findet im Zeitraum „t“ mit (A < t < B) statt.

Die Wärmespeicher des Systems Erde sind also „voll aufgeladen“ und die globale Abstrahlung geschieht kontinuierlich parallel zur hemisphärisch getakteten solaren Einstrahlung. Beim Mond war das ja noch ganz einfach, denn der verfügt neben seiner Oberfläche über keine zusätzlichen Wärmespeicher. Damit stellt sich die Frage, wo bei einer Betrachtung nach der globalen Strahlungsbilanz eigentlich der Wärmeinhalt der globalen Zirkulationen berücksichtigt wird.

3. ERKENNTNIS: Im Gegensatz zum Mond kühlt unsere Erde über Nacht nicht schnell genug aus.

Das Stefan-Boltzmann-Gesetz für einen schwarzen Körper in einer erwärmten Umgebung lautet nun:

S = S – S0 = S=235 W/m² ansetzen:

Abbildung 3: Der Temperaturbereich für eine pauschale Abstrahlung von S = 235 W/m² ist abhängig von der Basistemperatur T0 und ergibt nach dem S-B Gesetz keine eindeutige Lösung

Rot: Der Zusammenhang von Strahlung und Temperatur nach dem Stefan-Boltzmann-Gesetz aus Abbildung 1

Blau: Das S-B Temperaturäquivalent für S = 235 W/m² abhängig von der jeweiligen Umgebungstemperatur T0

Abbildung 3 macht also deutlich, dass es beim Stefan-Boltzmann-Gesetz von ganz entscheidender Bedeutung ist, bei welcher Umgebungstemperatur eine Abstrahlung nach der globalen Energiebilanz erfolgt. Jedenfalls kann die Temperatur eines Schwarzen Körpers nicht unter seine Umgebungstemperatur fallen.

4. ERKENNTNIS: Mit der Umgebungsgleichung des S-B Gesetzes ist jetzt das einzige Manko der hemisphärischen S-B Ableitung geheilt, nämlich das Fehlen einer Erklärung für das Verhalten der örtlichen Nachttemperatur.

Der konventionelle S-B Ansatz aus der globalen Energiebilanz geht nun davon aus, dass das Umgebungsniveau „T0“ unserer Erde null Grad Kelvin beträgt. Von dort aus werden nämlich nach S-B die ominösen 18 Grad Celsius mit S = 235 W/m² „hochgerechnet“, wie das in Abbildung 3 durch die erste „Treppenstufe“ von 0 bis 235 W/m² dargestellt wird. Die konventionelle S-B Ableitung für die „natürliche“ globale Durchschnittstemperatur von 18 °C ignoriert also den Wärmeinhalt der globalen Zirkulationen als unmittelbar wirksame Wärmespeicher unserer Erde.

5. ERKENNTNIS: Allein der Wärmeinhalt der globalen Zirkulationen sorgt dafür, dass das Temperaturniveau der Erde nachts nicht in die Nähe von null Grad Kelvin zurückfällt, wie wir das auf dem Mond beobachten können.

Abschätzung für die S-B Größe „T0“ in dieser Betrachtung: Das „T0“ in der S-B Umgebungsgleichung dürfte in etwa durch die global gemittelte Morgentemperatur der Ozeane kurz vor Sonnenaufgang repräsentiert werden. In dem auf EIKE veröffentlichten Artikel „Über die schwer fassbare globale mittlere Temperatur – ein Vergleich Modell ? Daten “ (von Bob Tisdale, übersetzt von Chris Frey, EIKE) heißt es über die durchschnittlichen Meerestemperaturen, Zitat:

Die mittlere absolute globale Wassertemperatur ICOADS beträgt während der letzten 30 Jahre (1984 bis 2013) 19,5°C, während deren absolute globale Wassertemperatur 19,3°C beträgt.

Zunächst einmal ist hier festzustellen, dass die globalen Durchschnittswerte der oberflächennahen Bodentemperatur (NST) und der Wassertemperatur stark differieren. Diese Differenz dürfte aber eher der natürlichen Begrenzung der Wassertemperatur durch den Gefrierpunkt des Wassers geschuldet sein. An diesem begrenzten Minusbereich für die Wassertemperatur scheitert also eine direkte Vergleichbarkeit beider Durchschnittswerte. Setzen wir hier also einfach einmal voraus, dass sich beide Durchschnittstemperaturen (Land und Meer) in etwa entsprechen würden. Da aber die globale Wassertemperatur zu tiefen Temperaturen hin eingeschränkt ist liegt es nahe, als gemeinsame Basis auf die durchschnittliche oberflächennahe Lufttemperatur zurückzugreifen. Und wenn wir in der S-B Umgebungsgleichung als Ausgangswert „T0“ diese global gemittelte gemessene Durchschnittstemperatur (NST) von 14,8 Grad Celsius ansetzen, dann ist der imaginäre atmosphärische Treibhauseffekt plötzlich verschwunden.

6. ERKENNTNIS: Wenn die bodennahe örtliche Nachttemperatur nach der Umgebungsgleichung des S-B Gesetzes durch einen Wärmezufluss aus den atmosphärischen und ozeanischen Zirkulationen gestützt wird, dann sind alle weiteren Spekulationen über einen „natürlichen“ atmosphärischen Treibhauseffekt hinfällig.

Sinkt also nachts die örtliche bodennahe Temperatur unter die Temperatur des ortsnahen Ozeans, dann erfolgt sofort ein Wärmefluss aus diesem Wärmespeicher. Anstelle einer weiteren Abkühlung der betrachteten Senke erfolgt dann also ein zusätzlicher Wärmefluss in diese Senke hinein. Im Umkehrschluss wird diese Senke also umso tiefer werden, je weiter entfernt vom Ozean sie sich befindet. Für eine anschauliche Darstellung des tageszyklischen Wärmeaustausches von Land und Meer wird hier auf Wikipedia verwiesen.
Anmerkung: Der direkte Einfluss der Atmosphäre wird hier nicht weiter diskutiert, weil sie sehr viel komplizierter zu beschreiben ist. Der Wärmeinhalt der Atmosphäre selbst weist nämlich wegen stark schwankender Wassergehalte eine wesentlich größere Variabilität auf und eine Wolkenbedeckung kann außerdem die nächtliche Abstrahlung deutlich vermindern.

Wenn wir jetzt einmal realistisch das S-B Temperaturäquivalent für eine globale Abstrahlung von S = 235 W/m² betrachten, dann dürften wir irgendwo im Bereich der zweiten „Treppenstufe“ in Abbildung 3 fündig werden, also im Bereich von T = 48 Grad Celsius. Dieser Wert ist als tägliche Schwankungsbreite selbst für extreme Wüstengebiete sehr ambitioniert, also dort, wo die globalen Zirkulationen nur einen geringen Beitrag gegen die Nachtabkühlung liefern können. Für die meisten individuellen Ortslagen kommt also im Umkehrschluss tatsächlich ein unterstützender Wärmestrom aus den globalen Zirkulationen zum Tragen. Das in Abbildung 4 dargestellte Jahresmittel des Energiehaushaltes der Atmosphäre und seiner Komponenten in Abhängigkeit von der geographischen Breite nach HÄCKEL (1990) weist diesen Zusammenhang eindeutig nach.

Abbildung 4: Jahresmittel des Energiehaushaltes der Atmosphäre und seiner Komponenten in Abhängigkeit von der geographischen Breite. QUELLE: HÄCKEL, Meteorologie, Verlag Eugen Ulmer, Stuttgart 1990, zu finden auch hier

Diese Abbildung 4 zeigt zum Beweis der oben gemachten Ausführungen den durchschnittlichen horizontal verfrachteten jährlichen Wärmestrom durch die globalen Zirkulationen in mittlere und höhere geographische Breiten hinein. Da die abschließende Argumentation über die Umgebungsgleichung des Stefan-Boltzmann-Gesetzes auf der globalen Energiebilanz von 235 W/m² aufsetzt, reiht sich diese Abbildung 4 von Häckel (1990), die ebenfalls auf einer Energiebilanz von 235 W/m² beruht, widerspruchslos in die vorliegende Argumentation ein und weist deren Richtigkeit nach.

7. ERKENNTNIS: Die theoretische Schwankungsbreite für das Temperaturäquivalent einer durchschnittlichen globalen Abstrahlung von 235 W/m² kann, außer vielleicht in extremen Wüstengebieten, auf der Erde kaum erreicht werden. Vielmehr wirkt der Wärmezufluss aus Atmosphäre und Ozeanen einer örtlichen Nachtabsenkung der Temperaturen entgegen.

Fassen wir die Temperaturgenese auf unserer Erde also noch einmal abschließend zusammen:

  • Die Sonne heizt auf der Tagseite der Erde Landflächen, Atmosphäre und Ozeane auf.
  • Die hemisphärisch berechnete Maximaltemperatur nach dem Stefan-Boltzmann-Gesetz wird dabei nirgendwo auf der Erde erreicht. Vielmehr werden insbesondere in niederen und mittleren Breiten die globalen Zirkulationen tagsüber mit Wärmeenergie „aufgeladen“.
  • Der Wärmeinhalt in den globalen Zirkulationen wird also auf der Tagseite aus der hemisphärischen Sonneneinstrahlung gespeist, was dort zu einer Reduzierung der gemessenen Temperaturen gegenüber den berechneten hemisphärischen S-B Gleichgewichtstemperaturen führt.
  • Für eine individuell betrachtete Ortslage auf der Nachtseite der Erde bestimmen der Wassergehalt der Atmosphäre und die Entfernung zum Ozean, wie stark sich die Erdoberfläche dort abkühlen kann.
  • Damit ist die Nachtabkühlung in meeresnahen äquatorialen Gebieten am geringsten und in kontinentalen Wüstengebieten niederer Breiten am größten.
  • Der Wärmezufluss aus den globalen Zirkulationen trägt also zur örtlich gemessenen Nachttemperatur bei. Diese Wärmeflüsse sorgen während des jeweiligen Winterhalbjahres in mittleren und höheren geographischen Breiten auch für einen generellen Temperaturanstieg gegenüber den hemisphärisch berechneten S-B Gleichgewichtstemperaturen.

Am Ende führen also eine physikalisch falsche Anwendung des Stefan-Boltzmann-Gesetzes und die Nichtbeachtung des Wärmeinhalts der globalen Zirkulationen bei der konventionellen S-B Herleitung einer globalen Durchschnittstemperatur über die Energiebilanz unserer Erde zu einem imaginären „natürlichen atmosphärischen Treibhauseffekt“ von 33 Grad. Tatsächlich aber folgt die globale Temperaturgenese auf der Erde einem hemisphärischen Strahlungsansatz über das Stefan-Boltzmann-Gesetz, während die Nachtabkühlung auf der Erde mit der Umgebungsgleichung des Stefan-Boltzmann-Gesetzes unter Einbeziehung des Wärmeinhaltes der globalen Zirkulationen beschrieben werden kann.

ERGEBNIS: Es sind in Wirklichkeit also die wärmebeladenen globalen Zirkulationen, die unter dem Pseudonym „natürlicher atmosphärischer Treibhauseffekt“ für lebensfreundliche Temperaturen auf unserer Erde sorgen, indem sie hier auf der Erde eine dem Mond vergleichbare extreme Schwankung von tageszyklischer Aufheizung und Nachtabsenkung verhindern.

Schlussbemerkung: Wegen des imaginären Konstruktes eines „natürlichen atmosphärischen Treibhauseffektes“ aus einer fehlerhaften Anwendung des Stefan-Boltzmann-Gesetzes sollen wir uns jetzt also alle einer „globalen Dekarbonisierung bis zum Jahre 2100“ unterziehen. Und damit wird dann unsere fossil betriebene Industrie, unser damit erwirtschafteter Lebensstandard sowie auch noch die Überlebensperspektive zukünftiger Generationen zerstört – ja geht’s denn eigentlich noch?