Der russische BREST – OD-300 Reaktor – Beginn einer neuen Ära?

von Dr. Klaus Dieter Humpich

Im Juni 2021 begann der Bau eines neuen Reaktors im sibirischen chemischen Kombinat Seversk. Der Ort ist nicht zufällig gewählt, sondern es handelt sich um ein grundsätzlich neues System: Ein spezieller Reaktor mit angeschlossener Wiederaufbereitung. Ziel ist ein Kernkraftwerk, dem lediglich Uran (aus abgebrannten Brennelementen) zugeführt wird und nur (endlagerfähige) Spaltprodukte abgeführt werden. Der entscheidende Punkt gegenüber herkömmlichen Reaktoren ist der Abfall Spaltprodukte. Die Problematik der Endlagerung über sehr lange Zeiträume wäre damit vom Tisch, da Spaltprodukte in weniger als 300 Jahren zerfallen sind. Die sehr langlebigen Transurane werden bei diesem Reaktor kontinuierlich „mit verbrannt“. Diese „Stromfabrik“ besteht also aus drei Einheiten: Der (neuartigen) Brennelemente-Fabrik, dem Kernreaktor und der Wiederaufbereitungsanlage. Die Brennelemente-Fabrik soll 2023 und die Wiederaufbereitung 2024 gebaut werden. Der Reaktor soll 2026 in Betrieb gehen.

Der BREST-OD-300

Das Entwicklungsziel dieses Reaktors der vierten Generation war „natürliche Sicherheit“. Das Kühlmittel ist nicht Wasser unter hohem Druck, sondern nahezu druckloses Blei. Der Reaktorkern befindet sich deshalb nicht in einem dickwandigen Druckbehälter, sondern in einem (nahezu drucklosen) Tank für flüssiges Blei. Der Schmelzpunkt von Blei liegt bei rund 330°C. Dies ergibt ein neuartiges Sicherheitsproblem, denn es muß gewährleistet sein, daß das Blei an keiner Stelle einfriert und irgendwelche Kanäle verstopft. Andererseits ist der Siedepunkt mit über 1700°C so hoch, daß sich kein Druck im Reaktorkreislauf aufbauen kann. Leckagen sind unproblematisch, da Blei weder mit Luft noch mit Wasser heftig reagiert. Blei wird praktisch auch nicht aktiviert, sodaß nur ein einfacher Kreislauf nötig ist, was Kosten spart und das System vereinfacht. Die Austrittstemperatur des Blei beträgt rund 540°C. Ist also weit von der Siedetemperatur entfernt. Hinzu kommt die große Wärmespeicherfähigkeit des Blei (spezifisch und über das Tankvolumen), die alle Lastsprünge abfedert. Ein solcher Reaktor ist in seinem (sicherheitstechnischen) Verhalten sehr gutmütig.

Blei ist ein sehr schlechter Moderator, der die Neutronen kaum abbremst. Schnelle Neutronen können zwar alles Uran, Plutonium und sogar die minoren Aktinoide spalten – das allerdings mit einer weit geringen Wahrscheinlichkeit. Als Konsequenz muß man entweder eine hohe Anreicherung oder einen höheren Gehalt an Plutonium verwenden. In diesem Sinne sind solche Reaktoren sinnvollerweise als Nachfolger der Leichtwasserreaktoren anzusehen. Erst wenn man entsprechend viele abgebrannte Brennelemente besitzt – von „Atomkraftgegnern“ fälschlicherweise als „Atommüll“ bezeichnet – aus denen man das Plutonium extrahieren kann, kann man sinnvollerweise mit dem Aufbau einer Flotte schneller Reaktoren beginnen. Für jede Erstbeladung muß das Plutonium von außen kommen. Läuft ein solcher Reaktor, kann er genug neues Plutonium bilden um für seinen Weiterbetrieb selbst zu sorgen. Man muß dann nur die Spaltprodukte entfernen (die nukleare Asche) und die gespaltenen Kerne durch U238 – ebenfalls von „Atomkraftgegnern“ als „Atommüll“ bezeichnet – ersetzen. In diesem Sinne verfügen wir bereits heute über gigantische Energievorkommen in der Form abgebrannter Brennelemente aus Leichtwasserreaktoren. Bisher war die Nutzung wegen der geringen Natururan-Preise noch unwirtschaftlich. Allerdings kommen die stets steigenden Lagerkosten für abgebrannte Brennelemente einer schnelleren Nutzung entgegen.

Da Blei ein schlechter Moderator ist, kann man die Gitterabstände im Kern vergrößern. Durch den verringerten Strömungswiderstand kann man mehr Wärme über Naturkonvektion abführen, was die Notkühlung auch nach einem Blackout (Fukushima) ermöglicht. Zu diesem Zweck sind Kamine (2 von 4 genügen) vorhanden, die die Restwärme passiv an die Umgebungsluft abführen. Selbst unter vollständigem Verlust der Wärmesenke bei voller Leistung von 700 MWth erreicht die Hüllrohr-Temperatur am ungünstigsten Brennstab keine 900°C. Für die Hüllen aus Stahl kein großes Problem: Ein Unglück wie in Fukushima wäre gar nicht möglich. Es könnte kein Knallgas entstehen (Reaktion der Zirconium-Hüllen mit Wasserdampf) und es wäre keine aktive Not-Kühlung nötig. Treffender kann man nicht verdeutlichen, was mit „natürliche Sicherheit“ gemeint ist.

Die Brennstäbe

Auch hier geht man neue Wege. Bei herkömmlichen Reaktoren verwendet man Urandioxid als Brennstoff in Hüllrohren aus Zirkalloy. Uranoxid ist eine (spröde) Keramik mit schlechter Wärmeleitung. Es kann bei einem Störfall passieren, daß die Brennstäbe in ihrem Zentrum bereits aufschmelzen und Spaltprodukte frei setzen, während sie ansonsten noch intakt sind. Fallen sie kurzzeitig und lokal trocken (Kühlmittelverlust-Störfall), kann die Abschreckung durch die Notkühlung fatale Konsequenzen haben (Harrisburg, Fukushima).

Bei diesem Typ verwendet man Uran-Plutonium-Nitrid als Brennstoff. Es besitzt eine um 30% größere Dichte, eine 4 bis 8 fache Wärmeleitung, gute Rückhaltung für Spaltprodukte, gute Formstabilität und geringe Reaktionen mit der Edelstahl-Hülle. Die hohe Dichte und gute Wärmeleitung führen zu geringeren Temperaturgradienten zwischen Zentrum und Umfang. Dies führt zu einer hohen Lebensdauer der Brennelemente (Brennstoffwechsel nur alle fünf Jahre) und großen Sicherheitsreserven für Störfälle.

Der Kern besteht aus 169 Brennelementen, hat eine Höhe von lediglich 1,1m und beinhaltet rund 20 to Brennstoff. Die Brennelemente sind sechseckig, wodurch sich eine sehr dichte Packung ergibt. Sie sind rundum offen, um bei einer etwaigen Verstopfung auch Querströmung zu ermöglichen. Auf Grund der Brennstoffeigenschaften und der Konstruktion ist die Neutronenökonomie so gut, daß keine separate Brutzone erforderlich ist und trotzdem eine Konversionsrate von Eins („Selbstversorgung“) erzielt wird.

Wiederaufbereitung

Bisher wurde großtechnisch nur das PUREX-Verfahren angewendet. Dieses nass-chemische Verfahren zielt – ursprünglich aus der Rüstung kommend – auf die Rückgewinnung von möglichst reinem Uran und (insbesondere ) Plutonium ab. Alles andere ist Abfall. Dieser ist wegen der minoren Aktinoide besonders langlebig und erfordert ein geologisches Tiefenlager zur Endlagerung. Bei diesem Reaktorkonzept sieht die Fragestellung gänzlich anders aus. Hier gilt es nur die Spaltprodukte – die nukleare Asche – zu entfernen. Alles andere soll und kann als Energieträger verbleiben. Die Spaltprodukte können anschließend weiterverarbeitet oder verglast werden und in Edelstahlbehälter abgefüllt werden. Wegen der relativ geringen Halbwertszeiten kann dieser Abfall je nach Gusto „tiefengelagert“ oder „ingenieurgelagert“ werden. Auf jeden Fall, zu verschwindend geringen Kosten gegenüber der Endlagerung von kompletten Brennelementen.

Der BREST-OD-300 im Allgemeinen

Der Reaktor verfügt über eine elektrische Leistung von 300 MWel bei einer thermische Leistung von 700 MWth. Er wäre per Definition damit noch ein SMR. Der Hersteller selbst betrachtet ihn eher als Vorläufer für einen Reaktor mit 1200 MWel, der etwa Anfang der 2030er Jahre gebaut werden soll. Es ist der russische Weg der kleinen, aufeinander aufbauenden Schritte mit immer mehr gesammelten Erfahrungen, die in das jeweilige Nachfolgemodell einfließen können. In diesem Zusammenhang muß man feststellen, daß die Entwicklung bleigekühlter Reaktoren in Russland eine Jahrzehnte lange Tradition hat. Sie reicht bis auf die U-Boote der Alfa-Klasse (Bauzeitraum 1968–1975, Außerdienststellung 1983 bis 1997) zurück. Zahlreiche Probleme bezüglich Korrosion und Verschleiß konnten inzwischen gelöst werden.

Der Aufbau ähnelt klassischen Druckwasserreaktoren: In der Mitte befindet sich der Reaktor. Von ihm gehen vier Kühlkreisläufe (flüssiges Blei) ab. Jeder Kühlkreislauf versorgt zwei Dampferzeuger. Das in den beiden Dampferzeugern abgekühlte Blei wird von einer Umwälzpumpe angesaugt und dem Reaktor wieder zugeführt. Die acht Dampferzeuger produzieren etwa 1500 to/h Dampf mit einer Temperatur von über 500°C. Auf Grund der höheren Dampftemperaturen ergeben sich bessere Wirkungsgrade und andere Anwendungsgebiete (z. B. Wasserstoffherstellung durch Hochtemperatur-Elektrolyse, Raffinerien, chemische Industrie etc.). Jeder Kühlkreislauf bildet eine separate Baugruppe mit kompletter Notkühlung, Umwälzpumpe etc. in einer eigenen „Betonkammer“. Das Ganze ist von einem Betonzylinder als Schutz gegen Einwirkungen von außen umgeben.

Anders als bei Leichtwasserreaktoren wird der Kern durch eine Lademaschine versorgt. Sie kann Brennelemente entnehmen, umsetzen und durch frische ersetzen. Verbrauchte Elemente werden im Bleitank bis zum erforderlichen Abklingen zwischen gelagert. Sie stehen also stets unter dem gleichen Schutz (Fukushima) wie der Reaktorkern. Ein Brennstoffzyklus dauert fünf Jahre (Leichtwasserreaktor 9 bis 16 Monate üblich). Sind erst einmal die üblichen Kinderkrankheiten beseitigt, kann man von einer noch besseren Verfügbarkeit als heute (etwa 90%) ausgehen. Geplant ist ein Abbrand zwischen 5,5% und 9% Schwermetall. An dieser Stelle erscheint es sinnvoll, sich die Materialströme und Abfallmengen zu verdeutlichen. Wenn dieser Reaktor das ganze Jahr voll durchläuft (Grundlast) verbraucht er etwa 270 kg Uran. Das ist gleichzeitig die Menge hochaktiver Spaltprodukte die jährlich anfällt. Geht man von einem mittleren Abbrand von 8% Schwermetall aus, sind etwa 3,5 to frische Brennelemente jährlich nötig. Das alles erinnert mehr an eine Anlage im Labormaßstab. Wollte man diese Strommenge von 2,6 TWh mit einem Offshore-Windpark erzeugen, müßte dieser mindestens 1000 MW umfassen oder bei einem Photovoltaik-Park mindestens 2000 MW. Wobei dies lediglich die gleiche Energieproduktion wäre. Da aber Wind und Sonne nur zufällig und unvorhersehbar sind (Wettervorhersage), müßten noch die zwingend erforderlichen Stromspeicher (zusätzliche Investitionen) und deren Verluste (ca. 50% für längere Ausfallzeiten) hinzugerechnet werden. Diese wenigen Zahlen machen deutlich, daß zumindest Russland nicht zurück ins Mittelalter will, ob nun „Klimakatastrophe“ oder nicht.

Sicherheit

Die vierte Generation soll noch einmal um Größenordnungen „sicherer“ sein als die derzeitige dritte Generation. Gemeint ist damit die Wahrscheinlichkeit für Unglücke, bei denen Radioaktivität das Betriebsgelände überschreitet und damit Anlieger gefährdet. Diese Reaktoren sollen so sicher sein, daß sie unmittelbar in einer Chemieanlage betrieben werden können, denn sie sind nicht gefährlicher als diese Anlagen selbst, wodurch völlig neue Anwendungen für Kernenergie möglich sind.

Da diese Kernkraftwerke mit dem „Abfall“ der bisherigen Kernkraftwerke betrieben werden können, sind sie extrem „nachhaltig“. Damit sind nicht nur die abgebrannten Brennelemente gemeint, sondern auch das „Abfall-Uran-238“ aus den Anreicherungsanlagen. Ganz neben bei, löst sich auch die „Endlagerfrage“. Spaltprodukte sind im Vergleich zu den Aktinoiden kurzlebig. Diese Form von „Atommüll“ ist nach wenigen Jahrzehnten weiterverarbeitbar. In ihnen sind jede Menge wertvoller Stoffe enthalten. Schon heute werden seltene Isotope aus dem Abfall der militärischen Wiederaufbereitung für z.B. medizinische Anwendungen gewonnen. Wer aber unbedingt möchte, kann sie auch weiterhin in geologischen Tiefenlagern verschwinden lassen. Nur eben zu viel geringeren Kosten.

Der Beitrag erschien zuerst auf dem Blog des Autors, hier 



Terrestrial Energy aus Kanada

Kanada zeigt, daß es keinen Zusammenhang zwischen der friedlichen Nutzung der Kernenergie und dem Streben nach Kernwaffen gibt. Man kann sehr wohl erfolgreich Kerntechnik ohne einschlägige Rüstungsindustrie betreiben. In der vollen Bandbreite von Grundlagen-Forschung, über Entwicklung, bis hin zur Produktion – wie einst auch in Deutschland.

Kanada ist nicht nur mit schier unerschöpflichen Vorkommen an fossilen Energien (Erdgas, Kohle und Öl), sondern auch mit sog. „Alternativenergien“ (Wasserkraft, Wind und Holz) reichlich gesegnet. Es wäre damit nahezu frei in seiner Entscheidung, welche Energieformen genutzt werden sollen. Diese Entscheidungsfreiheit haben Länder, wie Frankreich, Deutschland, Süd Korea oder Japan wegen ihrer eingeschränkten Ressourcen leider nicht. Kanada teilt aber mit vergleichbaren Ländern, wie Rußland oder Brasilien, den Nachteil schierer Ausdehnung. Beispielsweise befinden sich geeignete Flüsse nicht unbedingt in der Nähe der großen Städte, bzw. der Industriezentren.

Groß braucht klein

In Kanada zeigt sich diese Problematik sehr deutlich: In der Provinz Ontario wird mit 15 Candu-Reaktoren mehr als die Hälfte der dort verbrauchten elektrischen Energie erzeugt. Andererseits gibt es in vielen Städten im hohen Norden praktisch keine Alternative zu Diesel-Generatoren. Der Dieselkraftstoff muß überdies noch zu extremen Kosten dort hin transportiert werden. Kanada ist und bleibt aber auch ein „Rohstoffland“ mit zahlreichen abgelegenen Förderstätten für die eine Alternative gefunden werden muß. Eine Analyse ergab folgendes:

  • Ölsände: In 96 Anlagen wurde ein Bedarf an Heizdampf und elektrischer Energie für „Steam-Assisted Gravity Drainage“ festgestellt. Im Durchschnitt mit einer Leistung von 210 MWel pro Anlage plus Dampf.
  • Dampf für die Schwerindustrie: 85 Standorte der Chemieindustrie und Raffinerien mit einer Leistung von 25 bis 50 MWel plus Dampf.
  • Abgelegene Gemeinden und Bergwerke: 79 Standorte mit einem Leistungsbedarf von über 1 MWel plus erheblichem Wärmebedarf für die Nahwärmenetze. 24 Bergwerke ohne Netzanschluss.
  • Alte Kohlekraftwerke: 29 Blöcke an 17 Standorten mit einer durchschnittlichen Leistung von 343 MWel. Hier könnten (nur die) Kesselanlagen durch kleine Reaktoren ersetzt werden, wenn die sonstigen Anlagen noch in einem brauchbaren Zustand sind. Dies ergibt besonders kostengünstige Lösungen.

Es verwundert deshalb nicht, daß gegenwärtig 10 verschiedene Kleinreaktoren mit Leistungen zwischen 3 und 200 MWel zur Genehmigung bei den kanadischen Behörden eingereicht wurden. Es wird von der kanadischen Regierung angestrebt, etwa vier verschiedene Konzepte als Prototypen im nächsten Jahrzehnt zu errichten. Alle Reaktoren stammen aus privaten Unternehmen und sind überwiegend durch Risikokapital finanziert. Dies zeigt deutlich, welche Veränderungen die kerntechnische Industrie momentan durchläuft. Private Investoren wollen ihr Geld zurück und möglichst einen Gewinn oben drauf. Man kann also von der nötigen Ernsthaftigkeit und einem beschleunigten Arbeiten ausgehen – Zeit ist immer auch Geld. Es geht zur Zeit zu, wie in der Software-Branche. Allerdings darf man nicht aus den Augen verlieren, daß hier immer der Staat in Form der Genehmigungsbehörden ein ausschlaggebendes Wort mit zu reden hat!

Beschreibung des Reaktors

Bei dem Reaktor des kanadischen Unternehmens Terrestrial Energy handelt es sich um einen SMR (Small Modular Reactor) von der Bauart „Integral Molten Salt Reactor“, mit einer Wärmeleistung von 400 MWth (≈190 MWel).

Der gesamte Reaktor befindet sich in einem etwa 7 m hohen Stahlbehälter mit einem Durchmesser von etwa 3,5 m und einem Transportgewicht von 170 to. Das sind – verglichen mit den heutigen Komponenten von Druckwasserreaktoren – einfach zu transportierende und handhabbare Abmessungen. Solch ein Reaktor kann deshalb komplett in einer Fabrik (in Serie) angefertigt werden und erst anschließend zur Baustelle transportiert werden. Dort sind nur wenige Wochen bis Monate nötig, um die erforderlichen Anschlussarbeiten und die Inbetriebsetzung durchzuführen. Ein Vorteil gegenüber konventionellen Kernkraftwerken, der gar nicht zu überschätzen ist. Das wirtschaftliche Risiko (Baukosten, Finanzierungskosten und das Risiko eines Fremdstrombezuges) bewegt sich plötzlich in einer üblichen und allgemein akzeptierten (Lieferant ⟺ Kunde) Größenordnung.

Vorgeschichte

Vielen mag die angestrebte Inbetriebnahme des ersten Kraftwerks in der ersten Hälfte der 2020er-Jahren sehr unwahrscheinlich erscheinen. Es handelt sich hierbei aber keinesfalls um einen „Erfinder-Reaktor“, sondern eher um eine konsequente Weiterentwicklung. Man kann auf ein umfangreiches Forschungs- und Entwicklungsprogramm zu Salzschmelze-Reaktoren in den Jahrzehnten 1950 bis 1970 am Oak Ridge National Laboratory (ORNL) in den USA zurückgreifen. Es gipfelte im erfolgreichen Bau und Betrieb des Molten Salt Reactor Experiment (MSRE) und der Konstruktion des Small modular Advanced High Temperature Reactor (SmAHTR), der zur Produktion von Wasserstoff gedacht war. Allerdings sollte man auch nicht die notwendigen Arbeiten unterschätzen, die für die von der Genehmigungsbehörde geforderten Nachweise erforderlich sind. Weltweit sind diese Arbeiten bereits im Gange: Von Bestrahlungsexperimenten in den Niederlanden bis – man lese und staune – zur Forschung an Salzen in Karlsruhe (European Commission’s Joint Research Center).

Brennstoff und Kühlmittel

Salzbadreaktoren unterscheiden sich grundsätzlich von anderen Reaktortypen: Bei ihnen ist der Brennstoff auch gleichzeitig das Kühlmittel. Störfälle durch den Verlust des Kühlmittels – Fukushima und Harrisburg – sind ausgeschlossen. Es gibt auch keine Begrenzung durch den Wärmetransport innerhalb der Brennstäbe und durch die Brennstabhülle an das Kühlmittel. Der Brennstoff ist bereits während des Betriebs geschmolzen und im „Kühlmittel“ gelöst. Man verwendet hier die chemische Verbindung Uranfluorid. Dieses Salz wird in geringer Menge anderen Salzen, wie Natriumflourid, Berylliumfluorid bzw. Lithiumfluorid zugesetzt. Die genaue Zusammensetzung ist bisher nicht veröffentlicht. Sie richtet sich wesentlich nach der angestrebten Betriebstemperatur von 625 bis 700 °C. Die Salzmischung soll bei möglichst geringer Temperatur bereits schmelzen, aber andererseits muß sie auch langfristig im Betrieb möglichst chemisch stabil sein und bleiben. Das Salz ist bei diesem Reaktor sicherheitstechnisch das wesentliche (z. B. Korrosion) und kritische Bauteil.

Da das Salz im Laufe der Zeit durch die Spaltprodukte hoch radioaktiv wird, ist ein sekundärer Kreislauf mit dem gleichen Salz ohne Brennstoff vorgesehen. Die Wärmeübertragung findet durch Wärmetauscher innerhalb des eigentlichen Reaktorbehälters statt (Integrierte Bauweise). Die Druckverluste (ca. 5 bar) im Moderator und den Wärmeübertragern wird durch Pumpen innerhalb des Gefäßes überwunden. Die Wärmeübertrager sind redundant vorhanden, sodaß bei etwaigen Leckagen einzelne Übertrager einfach stillgelegt werden können.

Beladungsrhythmus

Man beschränkt sich bewußt auf die Verwendung von sehr gering angereichertem Uran für die Erstbeladung und auf Uran mit einer Anreicherung von etwa 4,75 % U235 als Ergänzung während des Betriebs. Damit verwendet man (erst einmal) handelsübliches Material. Prinzipiell ist auch Thorium und Plutonium einsetzbar. Bei solch geringer Anreicherung benötigt man zwingend einen Moderator. Es wird ein Block aus Reaktorgraphit im unteren Teil des Reaktorgefäßes verwendet, durch dessen Kanäle das Salz von unten nach oben strömt. Nur in diesen Kanälen findet die Kernspaltung statt.

Die ganze Einheit bleibt nur etwa sieben Jahre in Betrieb. Dann vollzieht sich ein „Brennstoffwechsel“ durch die Inbetriebnahme einer neuen Einheit in einem zweiten Silo. Die alte Anlage verbleibt in ihrem Silo, bis der wesentliche Teil ihrer Strahlung abgeklungen ist. Dieser Vorgang entspricht der Lagerung der Brennelemente im Lagerbecken eines Leichtwasserreaktors. Nach angemessener Zeit wird das Salz in spezielle Lagerbehälter umgepumpt und die restliche Einheit aus dem Silo herausgehoben und ebenfalls in das Zwischenlager auf dem Kraftwerksgelände gebracht:

  • Ziel ist ein Betrieb des Kraftwerks (theoretisch) ohne Unterbrechung.
  • Möglichst geringer Personalaufwand vor Ort, da (fast) keine Wartung und Inspektion nötig wird. Die Anlage wird zwar auf eine Lebensdauer von 60 Jahren ausgelegt, aber der „Reaktor“ nur sieben Jahre betrieben. Alle Arbeiten können wieder in einer Fabrik durchgeführt werden. Dort kann entschieden werden, was Schrott ist (Vorbereitung zur Endlagerung) oder wieder verwendet werden kann. Das Vorgehen erinnert an den guten, alten „Austauschmotor“ bei Kraftfahrzeugen.
  • Die alten Salze können in einer Wiederaufbereitungsanlage behandelt werden und die Spaltprodukte zur Endlagerung verarbeitet werden.

Salzschmelzen haben eine recht geringe Viskosität und lassen sich somit auch über längere Strecken gut pumpen. Wichtig ist hierbei, daß bereits den Reaktor ein „garantiert nicht strahlendes“ Salz verläßt (innen liegende Wärmeübertrager). Die Grenze des nuklearen Teils liegt somit am Rand des Silos. Der Charme eines solchen Reaktors liegt in seiner hohen Betriebstemperatur und seinem sehr geringen Betriebsdruck. Man kann mit relativ kleinem Aufwand noch einen einen dritten Kreislauf aus sogenanntem „Solarsalz“ anschließen. Damit gelangt man zu zwei völlig neuen Möglichkeiten:

  1. Man kann die Hochtemperaturwärme relativ einfach und kostengünstig über eine längere Leitung transportieren. Eine industrielle Nutzung wird damit möglich. Wohl kaum eine Industrie- oder Chemieanlage wird sich nach einem „Atomkraftwerk“ auf ihrem Gelände sehnen. Völlig anders dürfte sich die Situation darstellen, wenn die kerntechnische Anlage „deutlich“ neben dem eigenen Gelände steht und man nur Nutzwärme kauft.
  2. Durch die Verwendung von „Solarsalz“ – wie es heute beispielsweise bei Solarturmkraftwerken (manchen auch als Grill für Vögel bekannt) zur Stromproduktion in der Nacht eingesetzt wird. Eine vollständige zeitliche Entkopplung von Strom- und Wärmeproduktion wäre damit möglich. Der Reaktor könnte ständig mit voller Leistung gefahren werden und beim Einsatz einer Turbine mit „Übergröße“ hätte man ein perfektes Spitzenkraftwerk für die Regelung von „Flatterstrom“. Speicher mit geschmolzenem Salz haben nicht nur eine große Speicherkapazität (Phasenumwandlung), sondern weisen auch durch ihre Selbst-Isolierung (zuerst erstarrt eine Schicht an der Oberfläche), geringe Wärmeverluste über längere Zeiträume aus.

Notkühlung

Wenn tatsächlich eine Überhitzung eintritt, wirkt das passive Kühlungssystem. Der Reaktorbehälter steckt in einem weiteren Schutzbehälter. Dieser Schutzmantel entspricht dem Containment eines konventionellen Reaktors. Beide Behälter sind nicht isoliert. Steigt die Temperatur im inneren Behälter an, nimmt die Abstrahlung an den Schutzbehälter zu. Die Wärme wird durch Naturkonvektion über den Luftspalt zwischen Schutzbehälter und Silo abgeführt.

Reaktivitätskontrolle

Der Reaktor hat einen so starken negativen Temperaturkoeffizienten, daß er ohne Regelstäbe auskommt. Je höher die Temperatur der Salzschmelze wird – aus welchem Grund auch immer – um so weniger Kerne werden gespalten. Umgekehrt nimmt die Kernspaltung wieder automatisch zu, wenn mehr Wärme abgenommen wird. Es sind lediglich Abschaltstäbe für eine dauerhafte Abschaltung vorgesehen. Als weiteres passives Sicherheitssystem gibt es noch Kapseln die schmelzen und starke Neutronenabsorber frei setzen.

Konstruktionsvorgabe ist ein inhärent sicheres, walk-away sicheres Kernkraftwerk zu bauen. Alle treibenden Kräfte, die in einem Störfall radioaktive Materialien frei setzen können (Tschernobyl), werden vermieden. Deshalb werden alle unter hohem Druck stehende Komponenten (Wasser-Dampf-Kreislauf) vom Reaktor fern gehalten. Es muß für keine Druckentlastung gesorgt werden und kein Kühlwasser zum Reaktor gebracht werden.

Der Reaktor braucht überhaupt kein Notabschalt- oder Notstromsystem. Somit vereinfacht sich das Genehmigungsverfahren und die wiederkehrenden Sicherheitsprüfungen enorm. Alle Instrumentierungen und Steuerungselemente können konventionelle Produkte (Kostenreduktion) sein.

Schlussbemerkung

Das kanadische Genehmigungsverfahren ist vierstufig. Stufe 1 wurde bereits erfolgreich abgeschlossen. Man befindet sich nun in der zweiten Stufe. Der Zeitrahmen von etwa fünf Jahren bis zur Inbetriebnahme einer ersten Demonstrationsanlage scheint sehr ehrgeizig, wenn auch nicht unmöglich. Inzwischen sind alle namhaften kanadischen Ingenieurgesellschaften und die kerntechnische Industrie in das Projekt eingestiegen. Aus dem innovativen Startup mit rund 50 Beschäftigten ist eine schlagkräftige Armee mit zehntausenden Ingenieuren geworden. Es gibt praktisch kein Problem, für das keine erfahrenen Mitarbeiter zur Verfügung stehen. Wer schon mal mit kanadischen Unternehmen gearbeitet hat, kennt deren grundsätzlich optimistische und entschlossenen Rangehensweise. Wo deutsche Ingenieurzirkel in endlosen Sitzungen immer wieder neue Probleme erschaffen, probieren Kanadier einfach mal aus.

Der Beitrag erschien zuerst auf der Website des Autors hier