Die neue Wasserstoffstrategie – Nicht nur Käse aus Holland

Der einzige und vermeintliche Vorteil einer solchen Technik ist, dass kein CO2beim Einsatz entsteht, was den geltenden Klimadogmen sehr entgegen kommt. CO2ist bekanntlich ein Molekül von ca. 0,1 mm Größe (Greta Thunberg kann, qualitätsjournalistisch bestätigt, CO2-Moleküle mit bloßem Auge sehen, was nach ophthalmologischen Erkenntnissen auf diese Größe schließen lässt), das bei zunehmender Konzentration in der Luft aufgrund der Zusammenstöße mit dem Kopf schwere Schädel-Hirn-Traumata auslösen kann, die sich in manischer Klimahysterie äußern.
Elementarer Wasserstoff hat allerdings den Nachteil, dass das nächste natürliche Vorkommen ca. 150 Millionen Kilometer oder 8,3 Lichtminuten entfernt ist und eine Temperatur von 5.500°C aufweist, was Gewinnung und Transport etwas problematisch machen. Wasserstoff muss folglich auf der Erde aus anderen Stoffen produziert werden.

Bundeswirtschaftsminister Peter Altmeier mit Vorstellung der „Wasserstoffstrategie“. Bild Screenshot Video des Bundesministerium für Wirtschaft und Energie

Stand heute

Das und der technisch nicht gerade unheikle Umgang mit elementarem Wasserstoff haben seinen Einsatz bislang auf wenige industrielle Bereiche beschränkt, aber das soll ja anders werden. Man produziert ihn derzeit hauptsächlich durch thermische Formierung von Erdgas (Methan) mit Wasser oder partielle Oxidation von Erdgas, wobei Wasserstoff und CO2entstehen, alternativ auch durch Zersetzung von Methan im elektrischen Lichtbogen, wobei neben Wasserstoff elementarer Kohlenstoff anfällt. Da Erdgas bei unter 4 ct/kWh liegt, die Verluste erträglich sind und man bei den Produktionsprozessen bislang auf nichts Rücksicht nimmt, ist das ökonomisch in Ordnung. Aus klimadogmatischer Sicht müsste das CO2der ersten Verfahren abgeschieden und gelagert werden, was den Wirkungsgrad unter 50% treiben würde, und da der Kohlenstoff des letzten Verfahrens, in dem fast die Hälfte der Energie steckt, ebenfalls unbrauchbar wäre, landet man auch da bei der gleichen Wirkungsgradhausnummer. Zudem widerspricht der Einsatz von Erdgas Ressourcendogmen.

Wasserstoff aus Wind und Sonne

Dogmatisch korrekt und obendrein effizienter wäre eine komplett CO2-freie Produktion durch die Elektrolyse von Wasser, bei der immerhin ca. 85% der eingesetzten Energie im Wasserstoff landen würde. Dazu braucht man Strom. Den könnte man aus AKWs beziehen, Kosten z.Z. ca. 4 ct/kWh, langfristige Tendenz: abnehmend. Würde man das machen, wären bei einem Grundpreis von knapp 5 ct/kWh nachfolgende Verluste je nach Anwendung vermutlich kein großes Problem.
Will man aber nicht (Kein-AKW-Dogma). Es muss alles mit Windkraft oder Fotovoltaik gemacht werden, Kosten ca. 12 ct/kWh, Tendenz langfristig eher zunehmend. Da in Summe ohnehin nicht genügend Wind und Sonne zur Verfügung steht, zeitweise aber manchmal zu viel, will man diesen zeitweisen Überschuss für die Wasserstoffproduktion nutzen. So weit die offizielle Version, die bereits daran hapert, dass es nicht genügend Wind- und Sonnenstrom für alle Anwendungsgebiete gibt und geben wird. Aber das verschweigt man besser.
Die Niederländer wollen nun im Groninger Land einen neuen riesigen Windpark bauen. Der sollte zunächst soundsoviel Wohnungen versorgen können, falls der Wind weht, und ansonsten Wasserstoff produzieren. Inzwischen haben die Niederländer nachgerechnet: das mit den Wohnungen lohnt irgendwie nicht, also planen sie jetzt, nur Wasserstoff aus dem Windstrom zu produzieren. So um die 800.000 to/a sind geplant und irgendwie soll der Wasserstoff dann auch zu den Industrien an Rhein und Ruhr und zu Verbrauchern anderswo kommen. Die Niederländer meinen, das lohnt sich (für sie). Schauen wir uns das mal genauer an.

Ein paar Eckdaten

Im weiteren schauen wir auf ein paar Zahlen. Manche sind problemlos in Tabellenwerken zu finden, bei anderen ist das weniger einfach. Doch zunächst einmal zu den einfachen Sachen: Wasserstoff ist ja fürchterlich energiereich. Pro Kilogramm liegt er im Vergleich mit anderen Energieträgern deutlich an der Spitze, wobei wir hier die Verbrennungsenthalpie bei vollständiger Verbrennung betrachten.

Energieinhalt Wasserstoff Methan Butan Kohle
kJ/kg 286.000 50.125 49.620 32.750

Diese Werte werden gerne verkauft, um dem Betrachter den Wasserstoff schmackhaft zu machen. Für den Transport ist aber das Volumen interessanter als das Gewicht, und da sieht die Bilanz für den Wasserstoff weniger brillant aus:

Energieinhalt Wasserstoff Methan Butan Kohle
kJ/m³ (Gas) 25.535 35.803 128.500 (~82*10⁶)
kJ/m³ (F) 20,2*10⁶ 21*10⁶ 28*10⁶ ~82*10⁶

Egal wie man es betrachtet, Steinkohle liegt volumenmäßig an der Spitze. Aufgelistet ist der Energieinhalt bei Normaldruck/Temperatur als Gas und sowie als Flüssiggas. Wenn man Gas komprimiert, liegt man irgendwo dazwischen. NPT-Wert * Druck in bar = Energieinhalt. Auch als Flüssiggas bringt Wasserstoff gerade einmal 70 kg/m³ auf die Waage und hat dann eine Temperatur von -252°C, die Alkane wiegen immerhin schon um die 500 kg/m³ (bei -160°C und 0°C), Kohle bei ca. 2,5 to. Solche Daten, die für den Transporteur interessanter sind, muss man allerdings selbst ausrechnen.
Die Frage wäre dann: Gas oder Flüssiggas? Die Russen liefern ihr Erdgas durch Röhren zu uns, die US-Amerikaner verflüssigen es und liefern es per Tanker. Ziemlich leicht lässt sich ermitteln, womit man bei Flüssiggas zu rechnen hat:

Verluste Wasserstoff Erdgas
Verflüssigung ≥35% ~12%
Lagerung pro Tag ~3% ~0,1%

Verflüssigung kostet recht viel Energie, was einer der Gründe ist, weshalb das US-Gas auch teurer ist als das russische, aber das nur nebenbei. Bei Erdgas (Siedepunkt -161°C) hält sich das trotzdem noch in Grenzen, Wasserstoff mit einem um fast 100°C niedrigeren Siedepunkt ist aber ein echtes Problem: In Houston eingeschifft wäre in Rotterdam weniger als die Hälfte übrig. Was für die Niederländer auch gelten würde, wie wir gleich sehen werden.

Die Logistik der Niederländer

Für die niederländische Wasserstoffproduktion kommt ein anderes Problem hinzu, das sie praktisch auf einen Stand mit Wasserstoff aus Houston setzen würde, würden sie auf Flüssigwasserstoff setzen: mit einem Atomkraftwerk könnte man den Wasserstoff „just-in-time“ in der Menge produzieren, in der er benötigt wird, die Niederländer müssen aber so produzieren, wie der Wind weht. Nimmt man Stromleistungen aus Wind und Leistungsbedarf der Kunden als Vorbild für eine Wasserstoffwirtschaft, bedeutet das über den Daumen gepeilt, dass von den 800.000 to/Jahr über den Daumen gepeilt ein Drittel bis zur Hälfte längere Zeit gelagert werden müsste. Nach Elektrolyse, Verflüssigung, Transport und Lagerung kämen noch bestenfalls 35% der Energie an, was mit allem Drumherum bereits zu einem Preis von knapp 50 ct/kWh ab Tank führen würde.
Das Mittel der Wahl ist somit der Transport von Wasserstoff als Gas durch Pipelines, weil die üblichen Druckgasflaschen mit 50 l Inhalt,  300 bar Fülldruck und 50 kg Gewicht wohl kaum  lukrativ sind. Auch in Pipelines muss das Gas allerdings komprimiert werden. Bei AKW-Wasserstoff käme man vermutlich mit den üblichen 16 bar aus. Bei den großen Mengen, die bei Windkraftproduktion zwischengespeichert werden müssten, müsste man aber auch Gaskavernen, in denen das Erdgas zwischengespeichert wird, einsetzen und bei höheren Drücken arbeiten. Wenn man Gas komprimiert, muss Volumenarbeit geleistet werden, außerdem erhitzt sich Gas bei Kompression. Da weder die Temperatur in den Leitungen/Speichern gehalten werden kann noch an der Verbraucherseite die mechanische Energie bei der Entspannung genutzt wird, handelt es sich um reine, bei größer werdendem Druck steigende Verluste. Die sind zwar nicht so spannend wie bei der Verflüssigung, aber bei ca. 80 bar bleiben ohne Berücksichtigung anderer Verluste wie beispielsweise Erzeugen und Halten des Kissendrucks in den Kavernen oder Druckerhöhungen in längeren Leitungen vom Windstrom noch ca. 60% übrig. Beim Verbraucher dürften also auch hier nur knapp über 50% ankommen.
Solche Zahlen sind übrigens schon nicht mehr ganz einfach zu ermitteln. Zum einen redet man ungern über Verluste, zum anderen werden alle möglichen Schönrechnungsfaktoren eingerechnet. Wir kommen später noch darauf zurück. Solche Transportverluste entstehen zwar auch beim Erdgas, aber beim Wind-Wasserstoff müssen wir mindestens vom 5-fachen des Grundpreises von Erdgas ausgehen und dieser Faktor findet sich in allen Zahlen wieder. Zudem spielen auch noch weitere individuelle Randbedingungen mit. Als Kunde ahnt man vermutlich so ganz langsam, wohin sich die Abrechnung für die Heizung bewegt, wenn statt Erdgas niederländischer Wasserstoff eingesetzt wird.

Power-2-Gas

Die Pipeline-Version hat allerdings die Nebenbedingung, dass man auch Pipelines zur Verfügung hat. Wenn genügend vorhanden sind, kann man Erdgaspipelines außer Betrieb nehmen und umwidmen, ansonsten müsste man neue bauen. Das Gleiche gilt für Speicherkavernen. Als Alternative zum Wasserstofftransport bietet sich Power-2-Gas an, wobei man den Wasserstoff gar nicht erst transportiert, sondern mit CO2zu Methan umwandelt. Da die Reaktion zwischen Wasserstoff und CO2in der Gesamtbilanz exotherm ist, sieht das gar nicht so schlecht aus, wenn man die Abwärme nutzen kann.
Hier dreht allerdings die Schönfärberei voll auf. Realistisch betrachtet kommen von der Windkraft vermutlich ca. 60% im Methan an, das dann dem normalen Erdgas untergemischt werden kann. Spezialisten rechnen das unter Hinzuziehen aller möglichen Nebenbedingungen und theoretischer Optionen auf Werte nahe 100% hoch, also Wind=Gas. Eine der Mogelpackungen, die drinstecken: Wo bekommt man das CO2her? Richtig, aus CO2-Abscheidung aus anderen Prozessen. Das kostet ebenfalls wieder Energie, die bezahlt werden muss, was letztlich auch den Preis für das künstliche Erdgas weiter aufbläht. Die Kreuz- und Querrechnung ist ohne viel Aufwand kaum zu durchschauen und ob wirklich alle theoretischen Effekte auch in der Praxis genutzt werden können, ist fraglich. Man liegt sicher nicht weit daneben, wenn man unterstellt, dass bei P2G in der Gesamtbilanz ungefähr 40% des primären Windstroms ankommen. Mit entsprechenden Auswirkungen auf die Preise.

Wasserstoffträger

Besonders im Zusammenhang mit dem immer mehr platzenden E-Mobilitätstraum werden dem Publikum gerne flüssige organische Wasserstoffträger verkauft (dass Wasserstoffgas an Tankstellen eine dumme Idee sein könnte, scheint selbst Grünen ohne Knallgasreaktion einzuleuchten). Der Wasserstoff wird hierbei bei erhöhten Temperaturen chemisch in ein Molekül eingebaut und aus diesem bei noch höheren Temperaturen wieder freigesetzt. Handelsüblich sind etwa 150°C und höherer für Schritt 1 sowie 300°C für Schritt 2, jeweils in Gegenwart bestimmter Katalysatoren. Schritt 1 ist exotherm, wobei man versuchen kann, die Verluste durch Nutzen der Abwärme zu minimieren, Schritt 2 endotherm, d.h. es muss auf jeden Fall Energie zugeführt werden. Es ist etwas schwierig, an Daten zu gelangen, aber Wirkungsgrade bis zu 70% scheinen halbwegs realistisch zu sein. Die Datenlage ist deshalb schwierig, weil die den Wasserstoff nutzenden Brennstoffzellen einen höheren Wirkungsgrad als Benzinmotoren aufweisen, was sich propagandistisch besser macht als die Einzelwerte. Vermutlich sieht die Gesamtbilanz ohne alles Schönen kaum anders aus als bei Benzin.
Wieviel Wasserstoff kommt dabei zusammen? Nehmen wir als Rechenbeispiel einmal Toluol (verwendet werden andere verwandte Verbindungen, aber Toluol, ein Benzolabkömmling, war mal ein Kandidat), das bei einer Molmasse von 92 g/mol insgesamt 3 mol = 6 g Wasserstoff reversibel binden kann. Pro Kubikmeter kann Toluol bei einer Dichte von 0,87 g/cm³ umgerechnet ca. 14 kg Wasserstoff speichern, was einem Energieinhalt von 4*10⁶ kJ entspricht. Das ist gerade einmal 1/5 dessen, was ein LNG-Erdgasfahrzeug im gleichen Volumen mit sich führt. Nicht gerade der Renner. Bei der Untersuchung anderer Möglichkeiten, Wasserstoff an irgendetwas zu binden, findet man kein wirklichen Unterschiede zu diesen Werten.
Zum Transport von Wasserstoff eignen sich organische Wasserstoffträger somit eher nicht, und auch für die Mobilität kommen neben dem relativ geringen Energieinhalt und der damit notwendigen Tankstellendichte andere Probleme hinzu. An der Tankstelle muss man erst die alte Flüssigkeit ablaufen lassen, bevor man den Tank neu füllen kann, und auch der Tankwagen fährt voll wieder zurück und nicht leer. Auch mit AKW-Wasserstoff stellt sich die Frage, ob das wirklich die Technik der Zukunft ist, mit dem Preisgefüge, das sich aus Windkraft-Wasserstoff ergibt, braucht man diese Frage allerdings gar nicht erst zu stellen.

Strom-Speicher

Die Gastechniken werden auch als Energiepuffer für windschwache Zeiten gehandelt, d.h. man macht aus dem Gas in einem Kraftwerk wieder Strom, wenn kein Wind weht. Wäre genügend Strom vorhanden, wären Gasspeicher als solche vermutlich im Gegensatz zu allen anderen Ideen tatsächlich skalierbar, d.h. man könnte möglicherweise genügend Kavernen als Puffer bauen. Dummerweise landen wir bei P-2-G-2-P bei Wirkungsgraden um die 30%, d.h. in Überschusszeiten muss der Wind 3 kWh Überschussstrom produzieren, um in Mangelzeiten 1 kWh wieder zurück gewinnen zu können. Wir können uns die weiter Diskussion vermutlich sparen.

Außer Spesen nichts gewesen

Wie schon erwähnt, war es teilweise nicht ganz einfach, realistische Zahlen aus dem üblichen Mogelwerk heraus zuziehen und ich erhebe keinen Anspruch, wirklich die letzten technischen Details berücksichtigt zu haben. Wer in den Zahlen einen Rechenfehler findet, darf ihn auch gerne behalten. Aber auch Korrekturen dürften die Bilanzen nur unwesentlich ändern. Technisch ist alles machbar, großenteils auch vom Standpunkt eines Ingenieurs hochinteressant, aber bezüglich der Dogmenbefriedigung, unter der alles firmiert, skaliert mal wieder nichts. Da die große Stromwende einschließlich der Elektromobilität aus einer ganzen Reihe von Gründen nicht funktioniert und das selbst dem grünen Ideologieapparat auffällt, verkauft man dem Volk nun die nächste Technik ausgerechnet auf Basis des Nichtfunktionierenden nach dem Motto „wenn etwas nicht funktioniert und obendrein zu teuer ist, propagiere ich eben etwas, was überhaupt nicht funktioniert und noch teurer ist“. Und keiner lacht.
 
Über den Autor
Prof. Dr. Gilbert Brands hatte eine Professur an der FH Emden im FB Elektrotechnik + Informatik, Lehr- und Arbeitsgebiete Kryptologie, IT-Sicherheit, Programmierung, Mathematik, Quanteninformatik und anderes Hardcorezeug aus der Informatik. Davor selbständig, angefangen 1982 mit der Entwicklung eines Systems zur zeitgleichen Leistungserfassung für die RAG. Vom Studium her ist er Physikochemiker.
 
Der Beitrag erschien zuerst am 20.3.20 hier bei EIKE
 
 




Erdgas weiter auf dem Vormarsch

Es ist wie so oft in freien Märkten, die durch neue Technologien entstandene Schwemme in einem Winkel der Welt drückt weltweit auf die Preise. Durch die verringerten Preise entstehen neue Anwendungsgebiete, wie z. B. in der Stromerzeugung (Gasturbinen mit Abhitzekesseln) oder beim Transport (Diesel-Gasmotoren). Diese zusätzliche Nachfrage wiederum, facht die ganze Entwicklung weiter an, auch wenn man durch künstliche Zäune – wie in Deutschland – versucht die Preise hoch zu halten. Technischer Fortschritt läßt sich nicht durch Ideologie aufhalten. Wer sich dem entgegenstemmt, wird untergehen.

Erdgas hat allerdings einen entscheidenden Nachteil gegenüber Öl: Als Gas ist seine Dichte sehr gering (etwa 0,72 kg pro m3) und damit auch sein auf das Volumen bezogener Energiegehalt (etwa 10 kWh pro m3, was nur etwa einem Liter Diesel entspricht.). Es blieb damit nur die Rohrleitung als Transportmöglichkeit, was aber ein äußerst starres System ergibt: Der Brenner der Heizung im Keller muß lückenlos mit dem Gasfeld (im fernen Sibirien) verbunden sein. Gibt es keinen Gasanschluss, kann man auch kein Erdgas nutzen. Soviel nur zum Thema „Abschaffung der Ölheizungen wegen Klima“. Die geringe Energiedichte bringt aber noch einen weiteren entscheidenden Nachteil für die Energiewirtschaft mit sich: Die Speicherung ist sehr aufwendig und ebenfalls sehr kapitalintensiv. Diese negative Eigenschaft hat Erdgas übrigens mit sog. „regenerativen Energien“ gemeinsam, was deren geplante Ergänzung durch Erdgas (Dunkelflaute) besonders delikat macht.

Eine handelsübliche Druckgasflasche aus Stahl, mit einem Volumen von 50 Litern und einem Fülldruck von 300 bar, wiegt 75 kg (nackt, ohne Ventil etc.). Sie kann 15 m3 Erdgas speichern und wiegt damit befüllt knapp 86 kg. Die gespeicherte Energie beträgt rund 150 kWh oder anders ausgedrückt: Auf die gesamte Masse bezogen, nur rund 15% der von Dieselkraftstoff. So viel zu der Schnapsidee „wegen Klima fahren wir bald mit Power to Gas“. Bei Wasserstoff sieht die Sache übrigens noch viel schlechter aus, da Wasserstoff nur 30% des Heizwertes pro Volumen von Erdgas besitzt. Noch Fragen, warum die deutschen Automobilhersteller aus der Wasserstoffnutzung ausgestiegen sind? Wenn man ein Auto ohne Benzin oder Diesel bauen soll, erscheint einem die Lithium-Ionen-Batterie geradezu als Rettung – solange man es nicht selbst fahren muß.

Erdgas zur Stromerzeugung

Erdgas verdrängt in den USA (momentan) Kohle als Brennstoff der Wahl. Die Stromerzeugungskosten setzen sich wesentlich aus den Fixkosten (Baukosten, Lebensdauer, Verzinsung, Arbeitsausnutzung, Personal etc.) und den Brennstoffkosten zusammen. Ein Kohlekraftwerk ist im Bau und Betrieb wesentlich teuerer als ein Kombikraftwerk mit Gasturbine und Abhitzekessel (bei gleichem Umweltschutzstandard). Dieser Nachteil müßte durch billige Kohle kompensiert werden. Trotz aller (vermeintlichen) Vorteile, kann man ein Gaskraftwerk nur bauen, wenn am gegebenen Standort auch allzeit genug Gas zur Verfügung steht – ein passendes Rohr allein, ist noch nicht hinreichend. Erdgaspreise unterliegen starken saisonalen Schwankungen. Ursache ist der Sektor Gebäudeheizungen. Die Heizungen müssen auf jeden Fall im Winter bedient werden. Deshalb bezahlen die Heizungskunden auch nahezu vollständig das erforderliche Rohrleitungsnetz und die Erdgasspeicher. Kraftwerke können zwar im Sommer – wenn kaum Erdgas verbraucht würde – sehr günstig einkaufen. Besonders an kalten Tagen müssen sie aber extrem hohe Preise bezahlen oder werden sogar abgeschaltet. Diese Tatsache macht aus der schönen neuen Welt der „umweltschonenden Gaskraftwerke“ als Backup für Windmühlen und Photovoltaik lediglich eine Fata Morgana. Man könnte auch sagen: Annalena verschiebt die „Speicherung von Strom im Netz“ lediglich durch „Power to Gas in das (angeblich) vorhandene Gasnetz“.

Kryotechnik

Will man mehr Erdgas einsetzen, braucht man ein weiteres Transport- und Speichersystem welches örtlich unabhängig ist und eine hohe Energiedichte besitzt. Die großtechnische Lösung ist die Verflüssigung durch Unterkühlung auf unter -162°C. Durch diesen Phasenwechsel von Gas auf flüssig verringert sich das Ursprungsvolumen auf den sechshundertsten Teil und erreicht damit immerhin 60% des Energiegehalts von Diesel. Schlagartig ist es auch in Fahrzeugen (Schiffe und LKW, bald auch Lokomotiven) einsatzbereit. Es muß nur noch zu den Häfen, Autobahntankstellen und Bahnbetriebswerken gelangen. Bisher geschieht der Transport von LNG (flüssiges Erdgas) fast ausschließlich durch spezielle Tankschiffe (über sehr große Entfernungen) und Tankwagen auf der Straße im Nahbereich. Es fehlt bisher noch das mittlere Glied für größere Mengen (z. B. abgelegene Kleinstädte, Industrieanlagen, Kraftwerke usw.) auf größeren Strecken. Hierfür bietet sich die Eisenbahn an. In den USA werden bereits über 30% aller Güter zwischen den Städten und dem Ex- und Import mit der Eisenbahn transportiert. Sie gilt dabei als besonders umweltfreundlich, da sie 2017 im Schnitt mit einer Gallone Diesel eine Tonne Fracht 479 Meilen weit transportiert hat. Rechnet man das auf einen LKW (40-Tonner mit 25 to Nutzlast) um, dürfte der gerade einmal etwas mehr als 12 Liter (und nicht zwischen 30 und 40 Litern) auf 100 km verbrauchen. So ist es nicht verwunderlich, daß Donald Trump im April eine Verordnung erließ, den Transport von LNG in Eisenbahntankwagen zu ermöglichen. Hintergrund ist die Steigerung der Kapazität zur Verflüssigung von Erdgas um 939% im Zeitraum zwischen 2010 und 2018 durch die Inbetriebnahme neuer Terminals für den Export – Tendenz weiter stark steigend. Mit anderen Worten, es steht genug verflüssigtes Erdgas in den USA zur Verfügung, es muß nur noch zu den potentiellen Verbrauchern im Inland gelangen.

DOT-113 C140W Eisenbahntankwagen

Bisher durfte verflüssigtes Erdgas (LNG) nur mit der Bahn in den USA transportiert werden, wenn eine Sondergenehmigung vorlag und es in eigenen Spezialbehältern abgefüllt war. So ist natürlich kein Massentransport möglich. LNG konnte nur mit Spezialtankwagen auf der Straße transportiert werden. Mit zunehmender Menge kommen damit die Nachteile bezüglich Umweltbelastung, Sicherheit und Kosten zum Tragen. Demgegenüber ist der Massentransport nicht nur von Mineralölen, sondern auch von technischen Gasen mittels Kryotankwagen vom Typ DOT-113 seit Jahrzehnten bei den amerikanischen Eisenbahnen erprobt. Gleichwohl gab es erstmal einen Aufschrei bei den einschlägig bekannten „Umweltschutzorganisationen“. Da alle Trends mit zeitlicher Verzögerung über den Atlantik nach Europa schwappen, erscheint es sinnvoll, hier schon heute etwas näher darauf einzugehen.

Ein solcher Kryotankwagen ist nach dem Prinzip der Thermosflasche gebaut. Der eigentlich Tank besteht aus mind. 5 mm starkem Edelstahl (Type 304 oder 304L stainless steel nach ASTM A240/A240M gefertigt). Edelstahl ist notwendig, da normaler Stahl nicht die tiefe Temperatur von -162,2 °C aushält (Versprödung). Die äußere Hülle besteht aus mind. 11 mm dickem Kohlenstoffstahl. Sie ist die eigentliche Schutzhülle bei Unfällen. Zwischen beiden Hüllen besteht Vakuum und eine zusätzliche Isolierung gegen Strahlung (Mylar). Die Isolierung muß so gut sein, daß der tägliche Druckanstieg nur 3 psig (0,2 bar) beträgt. Der Tankwagen muß mindestens 45 Tage unterwegs sein können, bevor er beginnt Gas abzublasen. Er ist also während des Transports hermetisch abgeschlossen und es gelangt kein Erdgas in die Umgebung. Um dies zu erreichen, dürfen die Tankwagen nur mit 32, 5 Gewichtsprozenten beladen werden und bei Transportbeginn höchstens einen Druck von maximal 15 psig (1,034 bar) aufweisen. Der Trick, mit der unvermeidlich von außen eindringenden Wärme fertig zu werden, besteht also darin, stets im Nassdampfgebiet zu verbleiben. Es verdampft beständig eine entsprechende Menge des flüssigen Erdgases – wodurch dieses sich selbst kühlt – und steigt als Dampf in den Gasraum oberhalb der Flüssigkeit auf. Dadurch steigt natürlich der Druck im Behälter an. Um ein platzen zu verhindern, verfügt der Tankwagen über mehrere Sicherheitsventile, die gegebenenfalls den Druck kontrolliert abbauen. Dies geschieht schon bei etwa der Hälfte des Berstdruckes für den inneren Behälter. Bei der äußeren Hülle ist das Auslegungskriterium ein Mindestdruck von 2,6 bar gegen das Einbeulen (Vakuum im Zwischenraum).

Beim Umgang mit LNG ist Schutzkleidung zu tragen. Schon Spritzer (Augen) können wegen ihrer „Kälte“ schwere Verletzungen verursachen. Läuft LNG aus, verbreitet es sich schnell auf Boden oder Gewässern und fängt sofort an zu sieden. Der Dampf kann mit der Luft im Bereich zwischen 5% bis 15% ein zündfähiges Gemisch bilden. Geschieht die Zündung unmittelbar, entsteht ein Flächenbrand. Steigt die Gaswolke auf, kann sie einen Feuerball mit einer maximalen Temperatur von 1330 °C bilden. Ihre Zündgeschwindigkeit ist aber so gering, daß im Freien daraus keine Explosion resultiert. Anders sieht es aus, wenn die Gase z. B. in ein Gebäude oder einen Tunnel eindringen. Ein Tankwagen kann nicht explodieren, selbst wenn ein anderer neben ihm brennt. Bei Überhitzung würden die Sicherheitsventile abblasen. Selbst beim Versagen aller Sicherheitsventile ist eine physikalische Explosion infolge eines hohen Wärmeeintrages (BLEVE Boiling Liquid Expanding Vapor Explosion) auszuschließen. Für Züge mit solchen Wagons gelten darüberhinaus zahlreiche besonderen Betriebsvorschriften: Begrenzung der Geschwindigkeit außerhalb von Siedlungen auf 80 km/h und in der Nähe auf 64 km/h, regelmäßige Überwachung etc.

Wo kommt das viele Gas her?

Die USA sind Dank der Politik von Donald Trump zum größten Ölproduzenten aufgestiegen. Viele (Rußland, Saudi-Arabien usw.) hatten gehofft, daß bei einem Ölpreis von 50 bis 60 $/bbl die „Shale-Revolution“ in sich zusammenbrechen würde. Angefangen hat diese Revolution mit der Förderung von Schiefergas aus der Marcellus-Formation an der Ostküste, ist aber sehr schnell auf die Ölgebiete in Texas und New Mexico übergesprungen. Damit gibt es eine weitere sprudelnde Erdgasquelle in der Form von Begleitgas. In Texas waren die Erdgaspreise im letzten Jahr sogar negativ und man mußte wieder zum Abfackeln übergehen. Dies ist aber wegen der Umweltverschmutzung nur eingeschränkt erlaubt.

In den USA ist die Ölindustrie – völlig anders als in Rußland oder dem arabischen Raum – eher mittelständisch geprägt. Es gibt über 9000 Produzenten. Es geht eher zu, wie in der Software-Branche: Unzählige Erfinder und Glücksritter probieren ständig neue Ideen aus. Manche werden reich, viele gehen Pleite und unzählige werden von den ganz großen aufgekauft um ihre Erfindungen schnellstmöglich besser zu verwerten. So hat die international tätige Occidental die regionale Anadarko aus Texas geschluckt und so auf einen Schlag zusätzlich 25 000 Quellen und eine Beteiligung an weiteren 100 000 Quellen im Schiefergeschäft hinzugewonnen. Dies ist die eine Richtung der Kostensenkung durch Skaleneffekte. Die andere Richtung geht über den Hinzugewinn an Technologie und Daten. Die Ölindustrie ist neben dem Militär einer der entscheidenden Entwickler und Anwender des maschinellen Lernens – in Deutschland gern als künstliche Intelligenz (KI) bezeichnet. Die Ölindustrie hat traditionell schon immer gewaltige Datenmengen gesammelt und versucht auszuwerten. Diese harren nun der Nutzung für z. B. automatisierte Bohrungen. Die Fortschritte sind atemberaubend, so konnte allein in den drei Schiefer-Becken Eagle Ford, Bakken und Permian die Förderung von 1,5 auf 7 Millionen Barrel Öläquivalent pro Tag gesteigert werden – wohl gemerkt, in den letzten sechs Jahren. Durch die Anwendung von Technik und Wissenschaft konnte die Entölung von anfänglich 5–10% auf 20% gesteigert werden. Das führt zu dem Paradox von gleichzeitig steigender Förderung bei wachsenden Vorräten – mit der Konsequenz stark fallender Produktionskosten.

Anmerkung

Es werden weltweit noch immer große Mengen Erdgas einfach abgefackelt. Durch die Entwicklung der Erdgasverflüssigung (LNG) sind neue Transportwege und Absatzmärkte erschlossen worden. Solche Kuriositäten wie Nord Stream oder die Schwarzmeer-Pipeline werden wohl zukünftig nie mehr gebaut werden. Jetzt geht es um den konsequenten Aufbau von LNG-Lieferketten vom Supertanker über die Eisenbahn bis hin zum Tankwagen auf der Straße für die abgelegensten Ecken. Dann kann erstmalig nach der Erfindung von Benzin und Diesel ein neuer Kraftstoff in den Verkehrssektor als Alternative eindringen. Entscheidend ist nur der Preis und der sieht sehr verlockend aus (Aktuell kostet LNG knapp die Hälfte von Rohöl ab Corpus Christi). In den USA baut man bereits ein Tankstellennetz für LKW auf dem Autobahnnetz auf. In allen großen Häfen kann bereits LNG gebunkert werden.

Der Beitrag erschien zuerst auf dem Blog des Autors hier




Die Energiewende: Wieso das Energie-Denken so schwierig ist

Fussnoten

Ein Un-Denk-Beispiel: Die Energiewende

Das un-verstandene Thema der Energie

Die mehr oder weniger (un-)anschauliche Terminologie der Energie

Das Problem der Energiebilanz, der Energie-Dichte pro Masse und pro Zeit-Einheit

Die Desertec- Energie im Minus

Eine Milchmädchen-Rechnung von Energie, Kraft und Arbeit

Warum eine Tonne TNT weniger Energie hat als eine Tonne Kerosin

Und noch ein paar Un-Denk-Beispiele von Volumen, Gewicht, und Masse

 

Fussnoten

Ca. 1/3 dieses Textes besteht aus Fussnoten. Wenn im Haupttext ein Punkt noch weiter auszuführen ist, aber es den Gang der Gedanken im Haupttext nicht allzu sehr stören soll, wird das in die Fussnote gepackt. Weiterhin sind die Fussnoten ein guter Platz, um die x-Hundert www-Adressen zu verstecken, die im Haupttext recht unschön anzusehen sind.

Ein Un-Denk-Beispiel: Die Energiewende

Ich führe hier einmal als Paradebeispiel für heutiges Un-Denken die Diskussion um die Energiewende an: Ein wahnwitziger Plan, Deutschland als das Welt-weite Vorzeigeland der schönen neuen Energien. So dass Deutschland nun endlich einmal im positivem Sinn weltführend sein sollte.[1]Leider wurde dieser Plan so umgesetzt, dass die deutschen Landschaften mit riesigen Wind-Rotoren verspargelt wurden, und die Deutschen als Versuchskaninchen dafür, europaweit fast die höchsten Kosten für Strom bezahlen müssen, und einige Millionen, denen der Strom abgestellt worden ist, und man sie damit energetisch ins 18. Jh. zurück geschickt hat.[2]Weil die verantwortlichen Politiker und die Medien einige Grundprinzipien der Energie nicht verstanden haben, obwohl die federführende Bundeskanzlerin auch noch Physikerin ist..[3]/[4]Ich behaupte hier nicht, dass man alles bei der Fossil- und Atom- Energie belassen sollte, so wie es ist. Was aber unter anderem historisch vergessen wird, ist dass alle bisherigen Energie-Wenden der Menschheit, also von Holz zu Kohle, und von Kohle zu Elektrizität und zu Öl und Gas, jeweils mindestens 50 bis 100 Jahre gebraucht haben, denn die Umstellung aller Energie-Infrastrukturen ist extrem aufwendig und kapital-Intensiv. So etwas darf man daher nicht in 20 Jahren versuchen.

Das un-verstandene Thema der Energie

Das Erste, und in der Normalbevölkerung eher un-verstandene Thema ist das der Energie selber. Im Alt-Griechischen heisst es en-ergeiaoder en-ergon„Das, was imstande ist, Werke zu erzeugen“ (ergon ist das Werk, die gemachte Arbeit, engl. Work).[5]Aber leider ist nach der Physiker-Interpretation die Energieetwas, das sich zwar in der Form ändern kann, aber in sich immner gleich bleibt.

Energy is a conserved quantity;[6]the law of conservation of energy states that energy can be converted in form, but not created or destroyed. Siehe: https://en.wikipedia.org/wiki/Energy

Der Begriff „conserved quantity“ ist schon wieder erstmal irreführend. Denn es hat überhaupt nichts damit zu tun, ob und wie man die Energie konservieren (=irgendwo/-wie speichern) kann. Und die Vorstellung von Energie im volkstümlichen Sinne ist eher das Energie-Potential, um (irgend) eine  Arbeit zu leisten.[7]Und das wäre eigentlich die Kraft, im Alt-Deutschen Sinne. Siehe:

Potential energy: https://en.wikipedia.org/wiki/Potential_energy

Wenn man das Wort Energie-Erzeugung gebraucht, ist es ein Denkfehler, weil Energie nie erschaffen werden kann, und nie vernichtet werden kann. Deshalb ist der Begriff Erneuerbare Energien ebenfalls aus demselben Grund irrefürend. Was in der Energiewende- Un-Diskussion weiterhin allzu oft nicht verstanden wird, sind die Themen der Energie-Dichte pro Zeit-Einheit (=Kraft) und pro Volumen und Gewicht, der Energie-Gewinnung, der thermodynamischen Differenz, der Energie-Verfügbarkeit bzw. Speicherung, sowie ihre Verteilung bzw. der Transport der Energieträger. Dazu kommen alle gesellschaftlichen (Kapital-) und die Umwelt-Kosten. Ein Vortrag von David MacKay beleuchtet einige dieser Apekte sehr gut, vor allem mit guten graphischen Darstellungen:

https://www.youtube.com/watch?v=E0W1ZZYIV8o&t=748s

Ein treffendes Beispiel in seinem Vortrag ist in Min. 2:57 die Berechnung, dass man für den Betrieb von Autos mit reinem Biokraftstoff eine Fläche von 8 km Breite entlang von XYZ*100.000 Km dicht befahrenen Autobahnen und Strassen bräuchte, um die Energiepflanzen anzubauen. Noch nicht einberechnet wäre dabei die Energie, die man bräuchte, um mit intensiver Landwirtschaft die Pflanzen zu säen, zu kultivieren, zu ernten, und zu aufbereiten. Das gibt uns erst einmal einen Denk-Anstoss, was das Grundproblem von Bio-Kraftstoffen ist. Der Platzbedarf der Erneuerbaren Energien ist ein wesentlicher Faktor. In Min. 7:47 sagt er, Bio-Kraftstoffe erzeugen nur 0,5 Watt pro Quadratmeter (0,5 W/m**2). Windenergie erzeugt 2,5 W/m**2 (Min 8:12), Sonnenenergie erzeugt 5-20 W/m**2 (Min 8:40). Atomkraft erzeugt 1000 W/m**2 (Min 10:40). Nicht zu vergessen ist aber der Platz- und Energie-Bedarf des Abbaus des Urans, oder der Kohle. Nicht zuletzt kommen die ökologischen Kosten noch dazu.

Die mehr oder weniger (un-)anschauliche Terminologie der Energie

Dass die Herren (und ein paar Damen) Physiker mit ihren Joule und Newton arbeiten, hilft auch nicht viel weiter zum Allgemeinverständnis der Energie. Leider gibt es hier die Denk-Falle der Un-anschaulichen Terminologie. Es ist also auch ein Problem der (nicht so) ethischen Physiker-Welt-Gemein-Schaft, die ihre Terminologie nach Gusto über ihre Kultur-Heroen verteilt.[8]Ich habe darüber eine ziemlich umfangreiche Diskussion geführt: „The Ethics of Terminology“[9]Was es für die Fachleute einer Wissenschaft einfacher macht, darüber zu sprechen, fördert nicht gleichermassen das Verständnis der Laien, aber eher umgekehrt. Das ist leider bei der Energie ganz besonders der Fall. Die erste Denkfalle im Bereich der Energie ist, um es kurz zu sagen, die völlig unanschauliche Definition der Physiker, dass die Energie immer gleich bleibt. Aber es ist entscheidend für den Energie-Transfer von Wärme in Wasser, wieviel Wärme-Menge pro Zeiteinheit umgewandelt und transferiert wird. Das noch viel schlimmere Grundproblem (der Energie) dahinter ist wiederum, dass für die allermeisten Physiker (bzw. ihre Formeln) die Zeit reversibel ist. Und wenn man Energie denkt, muss man dringend Thermodynamik denken, und das ist ziemlich schwierig. Und nur die Thermodynamiker arbeiten mit der Zeit als wesentliche irreversible Grösse.[10]Das alles macht das allgemeine Verständnis der Energie so schwierig. Denn für einen Kohle-Minen-Arbeiter ist es intuitiv sehr klar, dass wir mehr körperliche Energie (=Kraft) brauchen, um 10 kg Kohle in 1 Sec. zu heben, als wenn wir dafür eine Minute Zeit haben. Ein analog umgekehrtes Beispiel ist der Hebel und der Flaschenzug. Denn hier können wir die Kraft über mehr Zeit, bzw. über die Länge des Seils verteilen. Womit dann ein paar 100 bis 1000 Menschen (mit jeweils 0,1 PS-Kräften) auch einen 1000- Tonnen-Obelisken irgendwohin ziemlich weit vom Herstellungsort bringen können, und dann sehr präzise auch noch aufrichten. Wie sie das im alten Ägypten damals genau machten, weiss leider heute Niemand mehr. Insofern sind die Begriffe der Kraft und der Arbeit intuitiv besser zu verstehen als das esoterische und vollkommen irreale Konstrukt der Energie der Physiker. Es ist:

1) Die Kraft (in Form von Watt) ist das, was man braucht, um eine Arbeit zu verrichten,

2) die Arbeit braucht dann noch xyz* (Minuten, Stunden oder Tage-werke), der Kraft.

und am Ende der Arbeit steht:

3) das Werk (Ergon).

Die Moral von der Geschicht‘ ist: Lasse keine Politiker oder Parlamentarier über Energie-Technologie entscheiden, die nicht wenigstens einen Uni-Abschluss in Physik, Thermodynamik, oder Energie-Technik, sowie ein paar Jahre Praxis darin, haben. Deshalb: Rauschebart- Turnschuh- Linksgrün- Aktivisten mit viel „Dampf“ im Hirn sind da nicht zu gebrauchen.

Das Problem der Energiebilanz, der Energie-Dichte pro Masse und pro Zeit-Einheit

Die Energiebilanz von Kraft-Stoffen ist sehr unterschiedlich, angefangen mit dem Aufwand (= Kapital und Energie) für ihre Gewinnung aus der Erde oder aus dem Sonnenlicht und ihre Aufbereitung. Die Atom-Kern-Fission mit dem Brennstoff Uran hat die höchste potentielle Energiedichte (=Energie-Potential) pro Volumen und pro Gewicht. Allerdings hat es auch die höchsten Kosten, um die ausgebrannten Reste des fissilen Brenn-Materials irgendwo zu entsorgen, und zwar für ca. 100.000 Jahre.

Fossile Kraftstoffe wie Kohle,[11]Öl und Methan-Gas haben recht unterschiedliche Kosten für die Gewinnung[12]und eine geringere aber immer noch hohe Energiedichte pro Volumen und pro Gewicht. Bei den erneuerbaren Energien, also Wind und Sonne, verschlechtert sich die Energiebilanz durch die hohen anfänglichen Investitionskosten, durch den hohen Platzbedarf, und die hohen Schwankungen im Output, die wiederum extrem hohe Speicherkosten nach sich ziehen.

Einzig die Wasserkraft aus Stauwerken hat eine hohe Energiedichte und Speicherbarkeit, aber erhebliche ökologische und politische Folgekosten. Denn ein grosser Staudamm setzt erst einmal grosse, vorher meist besiedelte Flächen unter Wasser, und zerstört das Ökosystem der Fische, etwa im Fall der Lachse, die in ihrem Lebens-Zyklus meistens die Flüsse herauf- und herab- wandern wollen, aber an einem Staudamm nicht weiter kommen.[13]Weiterhin geraten durch das aufgestaute Wasser öfter einmal die Berghänge entlang der Speicherseen ins Rutschen.[14]Die Masse des aufgestauten Wassers kann Auslöser für Erdbeben sein. Politisch ist es problematisch, weil ein Staudamm stromaufwärts, die stromabwärts gelegenen Anrainer in Wasser-Probleme bringt. Siehe den Nil und die Ströme Asiens, wo das Problem besonders verschärft auftritt.

Die Herangehensweise der deutschen Bundesregierung, erst einmal nur die Erzeugung der erneuerbaren Energien zu fördern, ohne sich um die Speicherung und Verteilung derselben zu kümmern, war also, das Pferd von hinten aufzuzäumen, und hat zu ungeheuren (und besser vermeidbaren) Kosten für die Bevölkerung Deutschlands geführt. Es hatte auch niemand daran gedacht, dass die Chinesen die Technik so schnell kopieren konnten, so dass die Deutschen Industrien damit nicht mehr konkurrenzfähig, also weg vom Markt waren. Der Strompreis in Deutschland ist europaweit einer der höchsten.[15]Da es nur für bestimmte Gross-Industrien Strompreis-Rabatte gibt, leidet vor allem die deutsche mittelständische und Klein-Industrie darunter, und damit die gesamte Wirtschaftskraft Deutschlands. Wieso eine Bundeskanzlerin als Physikerin so etwas veranlasst hat, ist völlig unverständlich.[16]/[17]

Natürlich hat die Mainstream-Presse von diesen physikalischen Hintergründen wenig Ahnung, weil die meisten Journalies eher Schwach-Mathikersind.[18]Sie beten nur irgendetwas nach, was ihnen von den grün-wolkigen Interessen-Gruppen vorgebetet oder vorgeflötetet wird. Ungefähr so ist es auch bei den Links-Grünen Parteigenossen, von denen die meisten ziemlich wolkige (Cloud-) Vorstellungen von Energie haben. Eine nette nicht ganz ernst gemeinte Satire dazu gibt es in diesem Artikel.[19]Denn der kritische Faktor der Erneuerbaren Energien ist die Energie-Speicherung. Diese ist zwar mit vielen Technologien möglich, aber energetisch sehr teuer. Denn es vermindert entscheidend den Wirkungsgrad. Etwa wenn man Wasserstoff aus Wasser erzeugt.[20]Aufgrund der sehr hohen Verluste der Konversion, und natürlich der hohen Kapital-Kosten der Speicher- und Transport-Technologien muss das in der Energiebilanz negativ einberechnet werden.

Weiter ausser Acht gelassen in der Energie-Debatte sind die ökologischen Kosten der Erneuerbaren Energien. U.a. sind da seltene Elemente, wie Kobalt, seltene Erden wie Neodym für die Magneten der Windturbinen, die erstens knapp sind, und deren Gewinnung hohe Umweltkosten verursacht. Wer macht für alle diese Faktoren schon vernünftige Kalkulationen? Eine WWW-Seite, die das spezifisch thematisiert, ist eike-klima-energie. Dort stehen auch Artikel, die von Fachleuten geschrieben sind: [21]

https://www.eike-klima-energie.eu/

Ich füge hier auch noch ein paar Videos aus dem Youtube zu dem Themenbereich an.[22]

Die Desertec- Energie im Minus

Ein gutes Beispiel für unerwartete Folgekosten ist die Photovoltaik (PV) in den grossen Wüstengebieten, wo es viel Platz und Sonne zur meisten Zeit des Jahres gibt. Das war einmal eine Idee ähnlich wie bei Desertec,[23]/[24]die aber schnell untergegangen ist. Denn in der Wüste gibt es viel Sand, und Sandstürme (=Sandstrahlgerät mit 100 bis 300 km/h, der Beschleunigung des Sandes, in der Grössenordnung von Kilo- bis Megatonnen,[25]und das manchmal tagelang), und die lassen die schönen PV-Anlagen sehr schnell sehr alt aussehen. Vor allem aber ist es sehr staubig, so dass kein Sonnenlicht mehr auf die PV-Paneele durchkommt.[26]Dazu kommen natürlich auch die Terroristen, die man bei 10 bis 100 km**2 pro Anlage kaum davon abhalten könnte, dauernd hier und da ein paar Bomben reinzuschiessen. Die Stromleitungen, etwa von der Sahara nach Europa wären aufgrund der Leitungsverluste ebenfalls nicht rentabel. Käme vielleicht noch als denkbare Alternative etwa die Erzeugung von Wasserstoff, aber in der Wüste gibt es kein Wasser dafür. Dafür müsste man erst riesige Wasser-Entsalzungsanlagen bauen, und dann Pipelines zu den PV-Anlagen bauen. Und die Wasserstoff-Tanker, um das nach Europa zu verschiffen, sind auch nur ziemlich aufwendig zu realisieren.[27]Usw. usf. Das sind alles extreme Wirkungsgrad-Vernichter so dass man vielleicht 1-5 % der erzeugten PV-Energie zum Verbraucher schicken kann, bei ungeheuren Kapital-Investitionen. Die Sonne und der Wind geben uns ihre Energie ganz bestimmt nicht umsonst.[28]

Eine Milchmädchen-Rechnung von Energie, Kraft und Arbeit

Nehmen wir einmal ein sehr vereinfachtes alternatives Energie-Vorstellungs-System, bei dem wir nur eine ungefähre, also nicht so exakte Umrechnung von (Kilo-) Watt gegen Wärme in einem Liter Wasser machen. In der einfachsten Form haben wir die Übertragung von Wärme aus einer Energie-Quelle (=Brennstoff) in eine Energie-Senke (=Wasser): Eine Badewanne mit 100 L Wasser (=Energie-Senke), das man von 0 auf 100 Grad innerhalb von 10 Minuten = 600 Sekunden erhitzt. Das ist vielleicht für jeden Menschen allgemein verständlich, und kann theoretisch von einem (sehr grossen) Gas-Durchlauf-Boiler (=Energie-Quelle) erreicht werden.[29]Der Code dafür würde etwa lauten: L100G100/Sec600 oder L(iter)100 * G(rad)100, pro Sekunden 600. Da wir aber das Wasser nur portionenweise (im Durchlauf) erhitzen, wollen wir in diesem Falle 1 Liter in 6 Sec., auf 100 Grad erwärmen. Ein Ein-Liter Kochtopf mit ca. 1000 Watt hätte den Code L1G100/Sec600. Es ist anschaulich zu verstehen: Wenn der Kochtopf bei 1.000 Watt (=Kraft) für 1 Liter Wasser, dafür 600 Sekunden oder 10 Minuten (=10 Kilowatt-Minuten =Arbeit) braucht, dass die Gas-Therme für die Badewanne aber 100.000 Watt (=Kraft) braucht, um 100 Liter in derselben Zeit von 10 Min. zu erhitzen. Die Energiedichte pro Zeiteinheit (=Kraft) ist der schwierigste Faktor für das Verständnis, weil es umgekehrt proportional zur Zeit ist. Wenn wir nun 100 Liter Wasser auf 100 Grad, in 6 Sekunden erhitzen wollen, braucht man eine noch viel höhere Energiedichte (=Watt, bzw. Kraft). Das lässt sich etwa mit dem Code L100G100/Sec6 anschaulich machen. Auch wenn wir am Ende doch nur 100 Liter Wasser mit 100 Grad Wärmemenge haben. Für den Wärme-Transfer wäre das mit chemischer Energie nur mit einem Raketenmotor zu erreichen. Und wenn wir es noch weiter treiben wollen, dann wäre eine kleine Atombombe in der Lage, das auch für 1.000.000 Liter in 1/1000 Sec zu schaffen.[30]/[31]/[32]/[33]

Analog, aber komplizierter ist die Formel, um eine Wohnung von 100 m**2 und 3 m hoch (=300 m**3 =QM), von 0 auf 20 Grad zu bringen, wenn man das in einer Stunde aufheizen will. Der Code QM300G20/Sec3600 symbolisiert das, ist aber energetisch sehr viel schwieriger zu berechnen, weil die Wände ja auch erstmal kalt sind, und dann fliesst die Wärme ja durch alle Ritzen und Fenster wieder ab. Und die gespeicherte Energie in Form von Wasserdampfin der Luft ist die darin noch gar nicht berücksichtigte Calorische Komponente dieser Rechnung.[34]/[35]

Ebenso kann man die Einheit PS oder Pferdestärke anschaulich machen: L100CM100/Sec1. Das wären 100 Liter Wasser (=100 Kg), die man 100 Centimeter (=CM) in 1 Sekunde gegen die Erd-Schwerkraft hochheben möchte.[36]Das entspricht ca. 1,33 PS oder ca. 1000 Watt. Der Code M60*(L100CM100/Sec1) wäre also ungefähr eine Kilowattstunde.

Die Energie-Dichte pro Zeiteinheit (=Kraft) ist äquivalent zu der Beschleunigung. Um ein Auto von 1000 kg von 0 auf 100 km/h zu beschleunigen, braucht es mehr Beschleunigung innerhalb von 10 Sec, als wenn wir uns dafür 100 Sec nehmen. Was dann in den Automobil-Journalen an oberster Stelle steht. Paradox und schwer verständlich dabei ist nur, dass das Auto mit 1000 Kg bei 100 km/h dieselbe kinetische Energie hat, egal ob es dafür 10 Sec. oder 100 Sec. gebraucht hat. Wie kommt das zustande? Dass für dieselbe kinetische Energie, die im Endeffekt (nach dem Ende der Arbeit) noch verfügbar ist (=Kraft), doch ganz verschiedene Mengen Energie gebraucht werden, um das zu erzeugen, wenn wir das in 10 Sec. oder in 100 Sec. machen wollen?

Ein anderes und etwas weiter hergeholtes Beispiel für eine (nicht so) anschauliche Darstellung wäre die Auflösung von Zeno’s Paradox von Achilles und der Schildkröte. Das Paradox entsteht nämlich durch eine Verkettung von irrealen Annahmen, was in der Computerei als GIGO-Prinzip bekannt ist (Garbage in, Garbage out). Siehe:

http://www.noologie.de/zeno01.htm

Warum eine Tonne TNT weniger Energie hat als eine Tonne Kerosin

Eine Tonne (= 1000 Kg) TNT hat weniger thermische Energie als eine Tonne Kerosin (oder Diesel was hier praktisch äquivalent ist). Auch wenn der Knall-Effekt der Explosion von einer Tonne TNT erheblich grösser aussieht als bei Kerosin. Warum ist das so? Weil eine Tonne Kerosin für die Energie-Erzeugung dazu noch Sauerstoff (=Oxydans) braucht, und davon ziemlich viel. Das ist in etwa die Gleichung für die Raketen-Motoren im Volumen-Verhältnis ca. 1:1.3 bis 1:3 bei den Saturn-Raketen.[37]Leider gibt es in den meisten www-Quellen keine Angabe zum Gewicht, nur zum Volumen. Aber für 1000 Liter Kerosin brauchen wir ca. 1300 Liter LOX (Liquid) Oxygen in der Rakete, um das auch gut zu verbrennen. „LOX is denser than kerosene or liquid hydrogen“.[38]LOX hat etwa 1.14 g/ml. Kerosin hat ca. 0.82 g/ml.In einer Tonne TNT muss das Oxydans im Äquivalent von 1-4 Tonnen Oxygen in der Mischung schon chemisch eingebunden mit dabei sein, sonst geht das Feuerwerk gar nicht los. Und daher enthält TNT proportional weniger verwertbaren Brennstoff in Form von CH-xy Carbohydraten =Toluol.[39]Die Energiedichte der potentiellen Energie bei Brennstoffen, also hier im Falle Kerosin, ist ebenfalls variabel, und zwar sowohl nach Volumen, wie nach Gewicht, was sehr unterschiedlich sein kann. Liquid H2 (=Wasserstoff) hat zwar die grösste potentielle Energiedichte pro Gewicht, aber die geringste pro Volumen. Alle diese Faktoren sind sehr wichtig in der Raketentechnik, aber im Fall der Auto-Industrie ist das für Liquid H2 ein Kill-Faktor.[40]Wenn ein Explosiv-Stoff mechanisch aus 2 Komponenten Oxydiser:Brennstoff gemischt wird, ist es besser zu sehen, in welchem Verhältnis man Oxydiser und Kraftstoff mischen muss.[41]Als Beispiel nehmen wir den Energiemix von Ammonium-Perchlorat oder Ammonium-Nitrat mit Diesel, =ANFO, oder einem anderen Hydrocarbon. Dort ist das Verhältnis sogar 94 % Oxydans zu 6 % Brennstoff:

It consists of 94% porous prilled ammonium nitrate (NH4NO3) (AN), which acts as the oxidizing agent and absorbent for the fuel, and 6% number 2 fuel oil (FO). ANFO has found wide use in coal mining, quarrying, metal mining, and civil construction in applications where its low cost and ease of use may outweigh the benefits of other explosives, such as water resistance, oxygen balance, higher detonation velocity, or performance in small-diameter columns. ANFO is also widely used in avalanche hazard mitigation.

https://en.wikipedia.org/wiki/ANFO

https://en.wikipedia.org/wiki/ANFO#Malicious_use

https://en.wikipedia.org/wiki/Ammonium_perchlorate

Bei einer Batterie ist es ganz analog zu dem Beispiel von TNT. Denn auch in einer Batterie muss das energetische Äquivalent von O2 schon mit hinein gespeichert sein, und daher bekommen wir aus einer Tonne Batterie nie soviel Energie heraus, wie aus einer Tonne Kerosin.[42]

Wir fassen also zusammen: Für die Energie-Physiker ist nur der Calorische Energiewert des Brennstoffs relevant, wobei man ausser Acht lässt, dass es einen grossen Unterschied macht, ob das Verbrennen in 100 Minuten oder in 0,001 Sekunden stattfindet. Das eine grosse Denkbremse des physikalischen Energie-Denkens, die schwer zu überwinden ist. Und das überlassen die Theoretischen Physiker dann lieber den Ingenieuren, die schon wissen, wo die Unterschiede liegen, und wie man damit umgehen muss. Und das Alles eher trotz der Formeln der Theoretischen Physik. Es geht also um die Prozess-Geschwindigkeit, also Energie-Menge und Dichte pro Zeit-Einheit. Dies nennt man anderswo auch die Kraft. Aber das ist keine physically correcte Weise zu denken.

Und noch ein paar Un-Denk-Beispielevon Volumen, Gewicht, und Masse

Die allzu-vielen „Doku“-Videos von N24 (und noch viele weitere auf dem US-Ami-Youtube) geben uns ein noch paar gute Beispiele für Un-Denk-Methoden. So werden Volumen-Angaben immer in x* Olympic Swimming Pools gemacht, wobei keiner weiss, wieviel Volumen ein Olympic Swimming Pool eigentlich hat.[43]Oder noch besser: Diese Talsperre hat x Millionen bis Milliarden Liter Wasser. Den Begriff Kubik-Meter oder Kubik-Kilometer kennt dort niemand. Hier ist vor allem die Denkfalle enthalten, die für die Journalies meist zu schwierig ist: Die Masse wächst im Kubik zur linearen Ausdehnung. Höhen werden immer gerne mit x übereinander gestapelten US-School-Bussen dargestellt, wobei nur die US-Amis sich vorstellen können, wie lang ein US-School-Bus ist. Gewichte werden prinzipiell mit x mal SUV’s dargestellt, was für jeden US-Ami natürlich sofort einsichtig ist. Desweiteren redet man auch immer von x mal Football-Pitches, anstatt von x mal 100 Meter. Das wohl allerschlimmste Beispiel ist, dass kein Journalie eine Exponential-Funktion denken kann.[44]Der meiste Rest der Menschheit leider auch nicht. Etc. pp. Es gibt nur endlich viel Intelligenz im Universum, aber unendlich viele Arten, um etwas un-intelligent bzw. un-anschaulich darzustellen.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[1]… und am Deutschen Ingenieur-Wesen sollte nun endlich einmal die Welt genesen.

[2]https://www.zeit.de/2017/49/strom-abstellen-deutschland-betroffene

https://www.shz.de/deutschland-welt/wirtschaft/armut-in-deutschland-330-000-haushalten-wurde-der-strom-abgestellt-id16249901.html

[3]https://www.eike-klima-energie.eu/2014/12/01/abschied-von-der-versorgungssicherheit-deutschlands-stromversorgung-ist-nicht-mehr-zu-retten/

[4]https://www.journalistenwatch.com/2018/11/19/wenn-sonne-rechnung/

Zitat daraus:

Ich wage mal eine Prognose. Wenn wir nicht vorher einen katastrophalen Blackout hinlegen, dann landen wir in fünf Jahren bei einem Strompreis von 50 Cents pro Kilowattstunde. Dann sind wir nicht nur Strompreis-Europameister, dann sind wir endlich wieder Weltmeister. Nicht im Fußball, aber im Strompreis. Das gerne gebrachte Opfer wäre dann für eine deutsche Durchschnittsfamilie so um 4000 Euro pro Jahr. Das sind etwa 1300 Kugeln bestes Schokoeis von Berthillion, also mehr als 100 Kugeln im Monat. Nicht zu sprechen von den 4000 Kugeln Normaleis pro Jahr, das wären dann täglich 11 Kugeln – Bon Appetit.

[5]Hier liegt die erste Denkfalle: Die Kraft ist das, was nötig ist, um die Arbeit zu machen. Das Werk, also die getane Arbeit ist das Endprodukt. Und das weiss jeder Arbeiter in der Kohlemine, dass er am Morgen meistens mehr Kraft hat, als am Abend.

[6]https://en.wikipedia.org/wiki/Conservation_law

[7]https://de.wikipedia.org/wiki/Akt_und_Potenz

[8]Watt ihr Volt:

Wie ich es einmal in einem Vortrag gesagt habe: Wenn ein „Visiting Anthropologist“ vom fernen

Stern Marsupial der Grünen Männchen auf einer Irdischen (=terrestrischen) Physiker-Tagung

als Beobachter dabei wäre, würde er denken, dass man hier eine Heilige Messe zu Ehren der Schutzheiligen,

dem Hl. St. Newton, dem Hl. St. Joule,  dem Hl. St. Watt, dem Hl. St. Ampere, und dem Hl. St. Ohm, celebriert,

dazu mit ein paar Weihrauch- Ovationen für den Ober-Heiligen St. Einstein.

Ich würde mich sehr wundern, wenn nicht bald eine Physiker-Kongregation beschliesst,

eine Physikalische Einheit als „Einstein“ zu benennen. Mein Wunschkandidat dafür wäre:

Das Quantum Dunkle Materie, die 90% des Universums ausmacht, und die noch niemand

je gesehen oder gemessen hat. Das wäre der ewigen Ehre des Einsteins wohl angemessen.

[9]http://www.noologie.de/symbol09.htm

http://www.noologie.de/noo04.htm#Heading234

Diese Diskussion geht bis auf C.S. Peirce zurück.

[10]Was sie aber zu einer Paria-Gemeinde der Sieben Aufrechten des Fähnleins macht, die von allen anderen

gestandenen Physikern im Gefolge von Einstein abhorresziert werden

Siehe dazu: Dieter Straub und sein Buch: Das Glasperlenspiel.

https://www.unibw.de/thermodynamik/modulseiten/modulseite_mitarbeiter/ehemalige-mitarbeiter

https://trauer.sueddeutsche.de/traueranzeige/dieter-straub-1934

Hier ist eine ausführliche Widmung des Werks von Dieter Straub:

http://teutonika.de/?p=6614

https://www.springer.com/de/book/9783034861519

https://www.ekkehard-friebe.de/Waibel.html

https://www.ekkehard-friebe.de/start.html

https://d-nb.info/104384726X/34

[11]Die Förderung von Braunkohle in Deutschland hat 1794.9 km**2 belegt, die aber z.T wieder renaturiert wurden.

https://www.cleanenergywire.org/factsheets/germanys-three-lignite-mining-regions

https://www.worldenergy.org/data/resources/country/germany/coal/

Nach der Quelle werden 129 Millionen Tonnen pro Jahr in Deutschland abgebaut.

[12]Die Förderung von Öl-Sanden in Kanada ist die wohl kapital-intensivste und ökologisch katastrophalste

Energie-Technik weltweit. Das Fracking in den USA steht dem nicht sehr viel nach.

[13]Bestes Beispiel: Der Columbia-River Dam.

https://www.nwcouncil.org/reports/columbia-river-history/damsimpacts

https://www.nrdc.org/stories/columbia-snake-river-basin-salmon-are-losing-their-way

[14]Bestes Beispiel: Der Vayont-Staudamm in Nord-Italien.

https://en.wikipedia.org/wiki/Vajont_Dam

At 10:39 p.m., a massive landslide of about 260,000,000 cubic metres (340,000,000 cu yd) of forest, earth, and rock fell into the reservoir at up to 110 kilometres per hour (68 mph), completely filling the narrow reservoir behind the dam. The landslide was complete in just 45 seconds, much faster than predicted, and the resulting displacement of water caused 50,000,000 cubic metres (65,000,000 cu yd) of water to overtop the dam in a 250-metre (820 ft) high wave.

Das waren 0,05 Cubic Kilometer.

1 Cubic kilometer is equal to a volume with sides 1000 x 1000 x 1000 meters. 1 km**3 = 1,000,000,000 m3.

https://www.unitconverters.net/volume/cubic-meter-to-cubic-kilometer.htm

[15]https://www.journalistenwatch.com/2018/11/19/wenn-sonne-rechnung/

[16]Ausser eben, dass diese Bundeskanzlerin sich vielleicht damit positionieren wollte,

dass: „An dem Deutschen Ingenieur-Wesen soll irgendwann einmal die Welt genesen“.

Dafür bekommt sie aber sicher bald einen hohen Posten bei der UN.

[17]In der ehemaligen DDR war man in Thermodynamik weltweit Spitzenklasse.

Das war vor allem an der Hochschule Zittau. Die kümmerten sich um all die

Braunkohle- Industrien, von denen die DDR existenziell abhing. Die Frau Merkel hätte sich

damals wohl besser ein wenig öfter in Zittau umgetan. Energie hat mehr mit Thermodynamik

zu tun, als mit Quanten-Theorie.

http://de.plagipedi.wikia.com/wiki/Merkel,_Angela:_Untersuchung_des_Mechanismus_von_Zerfallsreaktionen_mit_einfachem_Bindungsbruch_und_Berechnung_ihrer_Geschwindigkeitskonstanten_auf_der_Grundlage_quantenchemischer_und_statistischer_Methoden_(Dissertation)

https://www.zeit.de/2005/29/B-Merkel

https://f-m.hszg.de/fakultaet/fachgruppe-energietechnik/technische-thermodynamik.html

https://f-m.hszg.de/personen/mitarbeiter/prof-dr-ing-bernd-haschke.html

http://www.thermodynamik-zittau.de/

[18]Im Lehrplan der Journalistenschulen kommt Energie-Technik nicht vor.

[19]https://www.achgut.com/artikel/danke_angela_und_annalena_und_e.on

Es wäre interessant, nachzurecherchieren, welche von den Grünen Klima- und Energie-Protagonisten

einen Doktor in Physik, Thermodynamik, oder Energie-Ingenieur haben.

[20]Bei Wasserstoff ist Speicherung nur im Flüssig-Zustand praktikabel, aber die Energiekosten, um

Flüssig- Wasserstoff herzustellen, sind enorm. Denn das, was man an Energie hereingesteckt hat,

um ihn zu verflüssigen, bekommt man nie wieder heraus. Das ist nur in der Raketen-Technik eine Option.

Eine ziemlich gute Diskussion der Energie-Effizienz der Wasserstoff-Energie ist hier:

https://www.youtube.com/watch?v=f7MzFfuNOtY

Das folgende ist eher journalistisch-euphemistisch, und verschweigt die Fragen der Effizienz:

https://www.youtube.com/watch?v=c2yraQkMsJs

Ein anderer euphemistischer Bericht von Arte erwähnt ebenfalls nirgendwo diese Kosten.

https://www.youtube.com/watch?v=–4J-KuBMTM

Aber wenigstens gibt es in 12:00 eine Alternative Speichermethode von mcphy.com.

Hier ist es Magnesium-H2- Schwamm (oder ist es Magnesium-Hydrat?).

Siehe dazu die Website von mcphy.com. Auch hier komnt man über euphemistische Darstellungen nicht hinaus.

https://mcphy.com/en/

[21]Horst-Joachim Lüdecke; Prof. Dr. rer.nat. Physiker:

https://www.eike-klima-energie.eu/?s=L%C3%BCdecke

https://www.eike-klima-energie.eu/2018/11/05/erneuerbar-sind-nur-illusionen-die-zukunftstechnologie-windkraft-steht-vor-unloesbaren-problemen-teil-1/

https://www.eike-klima-energie.eu/2018/11/06/erneuerbar-sind-nur-illusionen-die-zukunftstechnologie-windkraft-steht-vor-unloesbaren-problemen-teil-2/

https://www.eike-klima-energie.eu/2014/11/20/eike-8-ikek-praezises-klima-timing-ueber-die-letzten-2500-jahre-prof-dr-horst-joachim-luedecke/

https://www.eike-klima-energie.eu/2013/09/18/die-deutsche-physikalische-gesellschaft-dpg-rezensiert-die-buecher-kampf-um-strom-von-prof-claudia-kemfert-im-vergleich-mit-energie-und-klima-von-prof-horst-joa/

https://www.eike-klima-energie.eu/2011/10/13/anmerkungen-zu-herrn-prof-dr-luedeckes-charakterisierung-der-medien-und-der-politik/

https://www.eike-klima-energie.eu/2008/08/21/prof-luedecke-offener-brief-zu-vielen-beitraegen-im-ehemals-liberalen-handelsblatt/

https://www.eike-klima-energie.eu/2018/10/13/ist-afrika-klueger-als-deutschland/

https://www.eike-klima-energie.eu/2016/08/11/glueckliche-schwarze-im-schein-einer-solarlampe-als-neokolonialer-traum-2/

[22]Ein ganz guter US-Ami-Vortrag zur Klimageschichte über xyz-Millionen Jahre ist von

Dan Britt – Orbits and Ice Ages: The History of Climate.

Was an diesem Video bemerkenswert ist: Das perfekte Mixing des Vortragenden

mit all seinen Fotos und Charts, was Media-technisch ziemlich anspruchsvoll ist.

https://www.youtube.com/watch?v=Yze1YAz_LYM&t=118s

Ditto: Climate (Paleoclimate) and Archaeology/History

https://www.youtube.com/watch?v=JD-MSrgPdFQ

Auch ganz nett: A Funny Thing Happened on the Way to Global Warming

Steven F. Hayward, Pepperdine University

https://www.youtube.com/watch?v=RZlICdawHRA

Bei den Amis glaubt man öfter, dass man versehentlich in eine eine Dampf-Plauderei von Billy Graham

hereingeraten ist, der gerade dummerweise das falsche Buch zum Zitieren mitgenommen hat.

Und der alle 10 Sekunden extrem laut und hörbar „ahhh“ und „oohhh“ macht, als hätte er gerade einen Orgasmus.

Oder noch schlimmer, es ist fast so, wie wenn Otto Waalkes uns eine Nachhilfe-Stunde in Klimatologie gibt.

Richard Alley – 4.6 Billion Years of Earth’s Climate History: The Role of CO2

https://www.youtube.com/watch?v=ujkcTZZlikg

[23]Dort wollte man aber thermische Solaranlagen bauen, also Kollektoren, die die Hitze einfangen

und konzentrieren. Die Energie-Speicherung sollte entweder mit einem Öl,

(=wenig Dichte und sehr grosse Behälter) oder mit ultraheissen (=verflüssigten) Salzen

(=viel Energie-Dichte =höhere Temperaturen) geschehen.

Letztere ist technisch zwar interessant, aber ultraheisse Salze sind extrem korrosiv und entsprechend

schwer technisch zu handhaben. Z.B. wenn man ca. 1.000 km vom nächsten Techniker-Büro entfernt ist.

Und wehe (=lat. vae victis), wenn ein thermischer Salz-Speicher-Behälter

einmal kalt=fest wird. Dann geht gar nichts mehr, wenn das Salz sich auch noch

in allen Rohrleitungen verfestigt.

[24]https://www.ecomena.org/desertec/

https://www.nature.com/news/sahara-solar-plan-loses-its-shine-1.11684

https://www.nature.com/news/2009/090121/full/457362a.html

https://www.chinadialogue.net/article/show/single/en/7558-Desertec-s-plan-for-Saharan-sun-to-power-Europe-burns-out

[25]Nehmen wir einmal als Positiv-Beispiel die Un-Mengen von Sand, die von der Sahara

in alle Welt geweht werden, so dass in den Alpen an bestimmten Tagen der Schnee braun ist,

von Sahara-Sand, und das Amazonas-Becken soviel davon abbekommt, dass es davon seine

Fruchtbarkeit bezieht. Wenn es da keinen Sahara-Sand gäbe, wäre das Amazonas-Becken eine kahle Wüste.

Das sind Kilo-Tonnen und Mega-Tonnen von Sand.

[26]Und das Wasser, um die Paneele immer wieder abzuwaschen, ist ja auch knapp.

[27]Bei Flüssig-Methan ist das praktikabel, aber für Flüssig-Wasserstoff braucht es viel tiefere Temperaturen

= (–252.882 °C). Und bei der Energie pro Cubic Meter sieht das noch viel schlimmer aus,

weil H2 ein gewaltiges Volumen benötigt. Siehe:

https://en.wikipedia.org/wiki/Hydrogen_economy

https://en.wikipedia.org/wiki/Hydrogen_economy#Electrolysis_of_water

https://en.wikipedia.org/wiki/Hydrogen_economy#Liquid_hydrogen

[28]https://www.journalistenwatch.com/2018/11/19/wenn-sonne-rechnung/

[29]Realistisch wären eher 30 Minuten, aber hier ist die Einheit 10 leichter begreiflich.

Es wird bei diesem Milchmädchen- Beispiel auch unterschlagen,

dass das Wasser aus der Leitung schon ca. 10 Grad warm ist, und zum Baden wird es nur auf

  1. 40 Grad erhitzt. Die Temperatur-Differenz ist also nur 30 Grad.

Deshalb braucht Jedermann/Jedefrau auch keine 100.000 Watt für ein Bad in der Wanne.

[30]Dann gibt es noch ein paar Zahlenspielereien: 1.000.000 Liter werden in 1000 Kubikmeter umgerechnet.

Das klingt auf einmal viel handlicher. Es sind auch 1000 metrische Tonnen, also eine Kilotonne.

Es ist auch 0.4 Olympic Swimming Pool (der 2.500.000 Liter oder 2.500 Kubikmeter hat).

Die Hiroshima-Bombe hatte 10 – 15 Kilotonnen TNT-Äquivalent Sprengkraft.

https://en.wikipedia.org/wiki/Little_Boy

https://en.wikipedia.org/wiki/Nuclear_weapon_yield

Die minimale Sprengkraft einer Fissions-Bombe liegt wohl sogar herunter bis zu 10 – 20 Tonnen TNT Äquivalent.

http://dc.medill.northwestern.edu/blog/2018/02/09/exactly-low-yield-nuclear-weapon/#sthash.RFNoESzv.dpbs

https://www.quora.com/What-is-the-minimum-yield-of-a-nuclear-bomb-How-small-can-we-make-a-nuclear-explosion

[Minimum weight of a fission core] It depends upon the fissionable material, but roughly 11–30lbs. It’s possible to make a backpack weapon of about 50–70 pounds and it’s ‘rumoured’ that the Russians tried to make one or more of them. That would (I am guessing) result in an explosion on the scale of 10–20 Tons of TNT. Which is a lot but it’s not all that impressive. Usually we measure weapons by the kiloton (1000 tons). Furthermore there is a sort of maximum value of practical nuclear weapons, because they get very heavy. So for example, US W-80 cruise missile yields 150kt.

[31]Hier sieht man auch sehr schön den Irrtum, der in der Mainstream-Presse hundertfach wiederholt wird,

wenn die Journalies schreiben, dass ein Hurrican x mal soviel Energie hat wie eine H-Bombe.

Was die aber geflissentlich vergessen, bzw. sich gar nicht vorstellen können ist, dass das Eine etwa eine

Woche braucht, das Andere aber nur 1/1000 Sec. So entscheidend ist der Faktor der Energie-Dichte.

[32]Eine noch gewaltigere Energiemenge wäre der Einschlag eines Meteors, wie etwa der des Kraters

Chicxulub, vor ca. 66 Millionen Jahren. Ich führe das Beispiel deswegen an, weil Meteore meistens

nicht senkrecht zur Erde fallen, sondern meist tangential, und sie bestehen meistens aus mehr oder weniger lockerem

Gestein. Wenn sie tangential zur Erde fallen, verteilt sich ihre Anfangs-Energie ersteinmal durch eine

xyz-Kilometer Reise durch die Atmosphäre, wobei viele Meteore wegen der Hitze schon in Stücke zerfallen,

bevor sie auf die Erde bzw. ins Wasser fallen. Und bei der Reise durch die Atmosphäre, würde ein solcher Meteorit bei seinem Einsturz auch x-Millionen Quadratkilometer Waldlandschaft in ein Flammendes Inferno verwandeln.

Siehe das Tunguska Event.

https://en.wikipedia.org/wiki/Tunguska_event

Im Falle von Wasser würden die Bruchstücke ihre kinetische Energie hauptsächlich durch das Verdampfen des Wassers weiter verteilen. Daher ist das Thema wiederum die Energiedichte pro Zeiteinheit. Denn so verteilt sich

ihre gewaltige Energie auf diverse Minuten (bei ca. 10.000 km/h). Und nicht auf 0,xyz Sekunden.

Weiterhin wäre so ein Einsturz-Krater nicht kreisförmig, sondern ein sehr lang gezogenes Ellipsoid.

https://en.wikipedia.org/wiki/Chicxulub_crater

http://large.stanford.edu/courses/2015/ph240/xu2/

http://jgs.lyellcollection.org/content/162/4/591

[33]Als kleine Anekdote dazu: Der deutsche Sci-Fi Autor Hans Dominik hat in einem seiner Werke

das Wundermittel Dynotherm „erfunden“. Eine Prise davon, und man konnte damit ein ganzes Schwimmbad

= 2.500.000 Liter oder 2.500 Kubikmeter zum Kochen bringen. Das hätten wir heute auch gerne.

https://books.google.de/books?id=6XEPDAAAQBAJ&pg=PT1919&lpg=PT1919&dq=Dominik+Dynotherm&source=bl&ots=VpZkpAhylh&sig=RlLdizuFRy0b4PH1y2ONBTPHx8o&hl=de&sa=X&ved=2ahUKEwjdzbLb5b3eAhWOL1AKHYHuCysQ6AEwCHoECBsQAQ#v=onepage&q=Dominik%20Dynotherm&f=false

[34]Siehe dazu auch das Häuser-Dämm-Problem der Politik. Denn man hat hierbei die Rechnung ohne den Wirt

gemacht. Der Wirt ist hier der Wasserdampf, der in der Luft eine erhebliche Menge Energie speichert.

Wenn das Haus gegen den Luftaustausch abgedichtet ist, was es nie vollkommen sein kann, kondensiert sich der

Wasserdampf an den unmöglichsten Stellen, und das heisst: Schimmel und Verrottung des Mauerwerks.

[35]Siehe auch: Warum der Wasserdampf die Haupt-Energiequelle eines Hurricans ist.

[36]https://en.wikipedia.org/wiki/Horsepower

75 kg × 9.80665 m/s2 × 1 m / 1 s = 75 kgf·m/s = 1 PS. This is equivalent to 735.499 W,

analog

100 kg × 9.80665 m/s2 × 1 m / 1 s = 100 kgf·m/s = 1.33 PS. This is equivalent to 9782 W.

[37]https://history.nasa.gov/SP-4206/ch7.htm

A tank with over 730 000 liters (200 000 gallons) of RP-1

With a capacity of 1 204 000 liters (331 000 gallons), the LOX tank …

Liquid hydrogen was only one half as dense as kerosene.

[38]https://space.stackexchange.com/questions/10649/what-are-the-criteria-to-put-the-oxygen-tank-above-or-below-the-fuel-tank-for-a

https://en.wikipedia.org/wiki/RP-1

Soviet and Russian rocket-grade kerosenes are very similar to RP-1 and are designated T-1 and RG-1. Densities are higher, 0.82 to 0.85 g/ml, compared to RP-1 at 0.81 g/ml. …

chemically, a hydrocarbon propellant is less efficient than hydrogen fuel because hydrogen releases more energy per unit mass during combustion, enabling a higher exhaust velocity. This is, in part, a result of the high mass of carbon atoms relative to hydrogen atoms.

http://www.braeunig.us/space/propel.htm

„liquid hydrogen has a very low density (0.071 g/ml)“

Liquid hydrogen therefore, requires a storage volume many times greater than other fuels. Despite these drawbacks, the high efficiency of liquid oxygen/liquid hydrogen makes these problems worth coping with when reaction time and storability are not too critical. Liquid hydrogen delivers a specific impulse about 30%-40% higher than most other rocket fuels.

http://www.braeunig.us/space/propel.htm#tables

[39]https://en.wikipedia.org/wiki/Toluene

TNT hat die User-freundliche Eigenschaft, wenn man es an freier Luft mit einer Kerze anzündet, dass es einfach verbrennt, aber nicht explodiert.

[40]Siehe hier noch einmal: https://www.youtube.com/watch?v=f7MzFfuNOtY

Noch genauer ist es bei:

https://en.wikipedia.org/wiki/Hydrogen_economy

https://en.wikipedia.org/wiki/Hydrogen_economy#Liquid_hydrogen

Alternatively, higher volumetric energy density liquid hydrogen or slush hydrogen may be used. However, liquid hydrogen is cryogenic and boils at 20.268 K (–252.882 °C or –423.188 °F). Cryogenic storage cuts weight but requires large liquification energies. The liquefaction process, involving pressurizing and cooling steps, is energy intensive.[62] The liquefied hydrogen has lower energy density by volume than gasoline by approximately a factor of four, because of the low density of liquid hydrogen — there is actually more hydrogen in a liter of gasoline (116 grams) than there is in a liter of pure liquid hydrogen (71 grams). Liquid hydrogen storage tanks must also be well insulated to minimize boil off.

Aus Zitat [62]:

The situation is much worse than this, however, because before the hydrogen can be transported anywhere, it needs to be either compressed or liquefied. To liquefy it, it must be refrigerated down to a temperature of -253°C (20 degrees above absolute zero). At these temperatures, fundamental laws of thermodynamics make refrigerators extremely inefficient. As a result, about 40 percent of the energy in the hydrogen must be spent to liquefy it. This reduces the actual net energy content of our product fuel to 792 kcal. In addition, because it is a cryogenic liquid, still more energy could be expected to be lost as the hydrogen boils away as it is warmed by heat leaking in from the outside environment during transport and storage.

[41]Man muss bei den www-Quellen darauf achten, ob nun Volumen oder Gewicht im Verhältnis angegeben wird. Nehmen wir der Einfachheit halber an, dass man technisch meistens mit Gewicht arbeitet, weil das leichter abzumessen ist, als Volumen.

[42]Und das ganz kleine, und leicht zu übersehende Problem ist: Je effizienter eine Batterie ist, desto mehr verhält sie sich im Falle eines Unfalls eher in Richtung TNT. D.h. sie setzt im ungünstigsten Falle alle ihre gespeicherte Energie auf einmal um. Wenn Tesla also seine Batterien um eine Grössenordnung besser (=energiedichter) macht, dann brennt ein Auto nicht einfach, sondern es explodiert. Und zwar bei irgendeinem Unfall, wenn die Batterie falsch zusammen gequetscht oder durchbohrt wird. Auch jetzt schon ist das ein grösseres Problem für die Feuerwehr, vor allem aber dann, wenn xyz Millionen Elektro-Autos auf den Strassen herumfahren. Da das Wasser zum Löschen auch ein guter Strom-Leiter ist, ist es ziemlich gefährlich für den Feuerwehr-Mann, ein brennendes Elektro-Auto mit Wasser abzuspritzen.

Siehe auch:

https://www.welt.de/wirtschaft/article184056942/Wer-auf-das-guenstige-Batterieauto-hofft-muss-noch-lange-warten.html

[43]Natürlich weiss Google das alles besser: Es sind 2.500.000 Liter oder 2.500 m**3.

http://www.patagoniaalliance.org/wp-content/uploads/2014/08/How-much-water-does-an-Olympic-sized-swimming-pool-hold.pdf

[44]https://patriceayme.wordpress.com/?s=exponential

https://patriceayme.wordpress.com/2018/04/23/super-earths-or-how-the-exponential-function-can-matter/

https://en.wikipedia.org/wiki/Exponential_function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




Die seltsame Liebe der Politiker zum Elektroauto Teil II – Die Physik gibt keinen Idiotenrabatt

Das Bündel schwerwiegender Nachteile hat eine 136 Jahre alte Ursache: Die Batterien

Die Angebote der Industrie an E-Autos überzeugten bisher nur wenige Kunden, was nicht weiter verwundert, wenn man die hohen Preise, das hohe Gewicht, die kläglichen Reichweiten – die im Winter nochmals abnehmen -, die langen Ladezeiten und die begrenzte Lebensdauer der extrem teuren Batterien betrachtet. Autofahrer sind nicht dumm und es spricht für sie, dass sie sich auch nicht für dumm verkaufen lassen.

Eine fachliche Bewertung der Situation um die Entwicklung von Batterien und die Rolle der Politik hat Prof. Dr.rer.nat. Frank Endres, Leiter des Instituts für Elektrochemie an der T.U. Clausthal 2014 veröffentlicht:
„Die weitgehend auf Erinnerungsschwäche beruhende neue Begeisterung von Politikern für das alte Thema ignoriert weiterhin das Fehlen zuverlässiger und kostengünstiger Antriebsbatterien. Das ist seit etwa 100 Jahren der Fall, als mit der Erfindung des Automobils sofort auch der Elektroantrieb Anwendung fand. Nach einigen Jahren hängte der Verbrennungsmotor, der seine Energie aus den flüssigen Kohlenwasserstoffen holt, den E-Antrieb hoffnungslos ab. Seither arbeiten Generationen von Experten der physikalischen Chemie an der Verbesserung der Akkumulatoren. Alternativ versucht man den Menschen einzureden, dass sie eh kein Auto bräuchten, das mehr als 100 km Reichweite hat. Sie sollen für längere Strecken schließlich die Bahn nutzen.

Lebensdauer, Alterung und Betriebssicherheit von Batterien


Alle Batterien unterliegen unvermeidbar einer zyklischen (gemäß der Zahl der Lade/Entladezyklen) und kalendarischen Alterung. In den letzten Jahren waren Lithiumionen-Batterien in aller Munde. Lithium ist jedoch ein sehr reaktives und auch nicht sehr häufiges Metall, das mit jedem bekannten Elektrolyten chemisch reagiert. Solche Batterien sind daher nicht dauerhaft stabil. Lässt man eine Lithiumionenbatterie mehrere Jahre liegen, bläht sie sich im Laufe der Zeit wegen der Alterung auf. Wird sie dann stark belastet, kann sie zu brennen beginnen. Auch beim wiederholten Laden/Entladen leidet die Batterie – ihre Materialien werden durch mechanischen Stress während der zyklischen Belastung immer mehr zerstört.

Wir haben post-mortem-Analysen von Batterien, die gebrannt hatten, durchgeführt und konnten sehen, dass sich in den Batterien sog. „hotspots“ bildeten, die schließlich derart viel Wärme erzeugten, dass die Batterie in einen instabilen Überhitzungszustand geriet.

Wegen der kalendarischen Alterung liegt die maximale Lebensdauer bei 6 Jahren, aber auch nur 3 Jahre Lebensdauer können vorkommen.
Und ein gänzlich neues Batteriekonzept ist so schnell nicht zu erwarten.


Die Energiedichte


In der Frage der erreichbaren Energiedichte schlägt leider die Thermodynamik unbarmherzig zu. Die elektrochemische Spannungsreihe erlaubt maximal 6 Volt für ein Elektrodenpaar; das wäre dann aber eine (hochgefährliche) Lithium/Fluor-Batterie, deren technische Umsetzung und Verwendung kaum vorstellbar sind. Voll geladene Lithiumionen-Akkus heutiger Bauart haben bei einer Einzelzelle eine Spannung von 4,2 Volt. Mehr ist schwer zu erreichen, weil man noch keine Elektrolyte gefunden hat, die für sog. „5-Volt-Batterien“ geeignet sind. Es ergibt sich wegen des spezifischen Gewichts der Batteriematerialien derzeit eine maximale Energiedichte von 0,3 kWh/kg; technisch erreichen kann man heute nicht mehr als 0,15 kWh/kg.

Kohlenwasserstoffe enthalten dagegen rund 12 kWh/kg, wovon ein guter Dieselmotor ca. 5 kWh in mechanische Energie umsetzt.
Wirkungsgrad-bereinigt schneiden Kohlenwasserstoffe bezüglich der Energiedichte also mindestens 30-mal besser ab als Li-Ionen-Akkumulatoren.

Lithium-Luft-Batterien wurden als die Lösung aller Probleme angepriesen, und man sprach von bis zu 15 kWh/kg, was aber eine höchst unseriöse Zahl ist, da sie nur auf das Lithium alleine bezogen wurde und die andere Elektrode, der Elektrolyt, das Gehäuse usw. nicht berücksichtigt wurden. Im Labor erreichen Lithium/Luft-Batterien 1 kWh/kg, sie altern aber rasch, und eine Lösung für dieses Problem erscheint in weiter Ferne. Ein Einsatz ist frühestens in 20 Jahren zu erwarten, falls überhaupt.

Mit Unterstützung des BMBF arbeitet unser Institut an der TU Clausthal grundlegend an Aluminium/Luft und Silizium/Luft-Batterien. Die denkbaren Energiedichten liegen bei 1 – 4 kWh/kg, aber das ist Grundlagenforschung und ebenfalls weit von einer kommerziellen Nutzung entfernt.

Vielleicht können Lithium/Schwefel-Batterien als Nächstes vermarktet werden. Im Labor erreichen sie schon 1 kWh/kg. Sie altern aber schnell und die nutzbare Energiedichte liegt bei ca. 0,3 kWh/kg, was im Vergleich zu Lithiumionenbatterien immerhin um einen Faktor 2 besser wäre.
Ich rechne eher mit einer langsamen Evolution im Batteriesektor als mit einer schnellen Revolution.


Die Kosten


Wirklich gute Lithiumionen-Akkus, wie sie z.B. im Modellflug verwendet werden, kosten zwischen 1.000 und 1.500 €/kWh und selbst die „billigen“, wie sie in Elektroautos genutzt werden, kosten heute 500 €/kWh. Auf die immer einmal wieder ins Feld geführten 100 – 200 €/kWh werden wir m.E. noch ein wenig warten müssen, und bei der angepriesenen Speicherbatterie eines Elektroautoherstellers mit ca. 300 €/kWh muss man die Langzeitqualität abwarten.

Das Fazit der näheren Betrachtung der elektrochemischen Batteriearten, die mindestens eine gewisse Entwicklungsreife aufweisen, als mögliche Speicher zur großtechnischen Netzstabilisierung lautet somit „nicht langzeitbeständig“ und „unbezahlbar“.
(Ende des Zitats von Prof. Endres)

Prof. Helmut Alt, FH Aachen, hat den Vergleich von Benzin- bzw. Dieselautos mit Elektroautos auf den Punkt gebracht:
„Einen 70-Liter Tank, der fast nichts kostet, länger hält als das Auto und ohne Lebensdauerverlust in 3 Minuten geladen ist, durch Batterien zu ersetzen, ist ein Wunschtraum, der aber nach allen derzeit bekannten physikalischen und chemischen Erkenntnissen heute und in denkbarer Zukunft nicht realisierbar ist.“


Die Batterieproduktion ist alles andere als umweltfreundlich

Bei allen Energie konsumierenden Geräten und Anlagen sollte man sich auch deren energetische Entstehungsgeschichte näher ansehen. Der SPIEGEL 34/2017 zitierte eine Studie des schwedischen Umweltinstituts IVL. „Was Fachleuten grundsätzlich bekannt ist, aber gern verschwiegen wird: Batteriezellen sind nicht nur extrem schwer und teuer, ihre Herstellung verschlingt auch Unmengen an Energie. Für die Produktion eines 100-kWh-Akkus nennt die Untersuchung eine Klimabelastung von 15 bis 20 Tonnen Kohlendioxid. Ein sparsamer Kleinwagen mit Benzin- oder Dieselmotor müsste bis zu 200.000 Kilometer fahren, um so viel Klimagas in die Luft zu blasen“.
Diese Zahlen werden durch eine Studie des Instituts für Energie- und Umweltforschung in Heidelberg aus dem Jahre 2014 bestätigt, nach der die Produktion einer Kilowattstunde Batteriekapazität 125 kg CO2 „kostet“. Das sind für eine 100-kWh-Batterie 12,5 Tonnen. Dazu kämen noch die CO2-Emissionen, die bei der Produktion des Elektromotors anfallen.
In einem weiteren Artikel des SPIEGEL 32/2017 wird über die Gewinnung von Lithium aus dem ausgetrockneten Salzsee im Norden der Atacama-Wüste in Chile berichtet: „Das Verfahren verschlingt enorme Mengen Wasser – in einer der trockensten Gegenden der Welt. Es ist ökologisch höchst umstritten, ökonomisch aber hoch lukrativ.“


Feuer !


Akkus, die brennen können, gab es bei den braven, schweren Bleiakkus, die in unseren nichtelektrifizierten Autos immer noch treu ihre Dienste verrichten, niemals. Seit den Lithium-Ionen-Batterien – eine große Erfolgsgeschichte – hat sich das geändert. Als erstes gingen Laptops reihenweise in Flammen auf. Dann traf es auch mehrfach Autos, die mit diesen Stromspeichern angefüllt waren: So verabschiedete sich am 4.1.2016 ein Tesla Modell S an einer norwegischen Ladestation in einer spektakulären Flammenshow. Der Brand konnte nicht gelöscht werden.

Aber die Alarmnachrichten berücksichtigen nicht, dass inzwischen Hunderte von Millionen Li-Ionenbatterien in Gebrauch sind und diese Unfälle daher immer noch selten sind. Aber neue Gefahren rufen immer neue Gegenmaßnahmen hervor, weshalb die Internationale Zivilluftfahrt-Organisation ICAO Anfang ab April 2016 die Mitnahme aller Geräte mit Lithium-Ionen-Akkus im aufgegebenen Fluggepäck verboten hat.
Je näher man den physikalischen Grenzen in der Batterietechnik kommt, desto kritischer scheint es für die Benutzer zu werden. Ob deshalb die Hoffnungen auf Batterietechnologien mit wesentlich höheren Energiedichten so ihr Ende finden, wird sich zeigen.


U-Boote zeigen die Grenzen der Batterietechnologie

Einen zwar indirekten, aber sehr klaren Beweis dafür, dass es bisher keine dem Blei-Säure-Akku in jeder Hinsicht überlegene Batterietechnik für Antriebszwecke gibt, zeigen die militärischen Entwicklungen im U-Boot-Bau. Obwohl den Marinen sowohl in den USA als auch in der Sowjetunion vergleichsweise enorme Mittel zur Verfügung gestanden haben, ist es beiden bis heute nicht gelungen, die Bleibatterien in den konventionellen U-Booten (also denen, die keinen Nuklearantrieb besitzen) durch eine überlegene Batterietechnik zu ersetzen. Man kann davon ausgehen, dass in den vergangenen Jahrzehnten in den Laboratorien dieser Länder sowohl kontinuierlich als auch massiv an entsprechenden Entwicklungen gearbeitet wurde – und auch noch wird. Das Ergebnis dieser Anstrengungen, gegen die das derzeitige Engagement der zivilen Industrie eher bescheiden anmutet, ist die Erkenntnis, dass nach wie vor die Bleibatterie die beste Lösung darstellt.
Wer zum Beispiel den Museumshafen im holländischen Zandvoort besucht und dort das große konventionelle russische U-Boot besichtigt, kann durch einen Blick in den jetzt leeren, riesigen Bauch des Bootes einen Eindruck von der Masse der Bleiakkus gewinnen, die dort einst die Fahrt im getauchten Zustand angetrieben haben. In diesem Punkte hat sich gegenüber der U-Boot-Antriebstechnik für die Unterwasserfahrt im 2. Weltkrieg bis heute einzig und allein die schiere Masse der Bleiakkus im Rumpf der konventionellen U-Boote erhöht. Niemals würde die Marine die Verwendung von Lithium-Ionen-Batterien auf U-Booten erlauben, so lange die nicht vollständig überwundene Brandgefahr dieser Speicher weiter besteht.

Dies war der Grund für die Entwicklung des „außenluftunabhängigen Antriebs“ der ab März 2004 eingeführten deutschen U-Boote der Klasse 212 A. Kernstück dieser U-Boote ist ein Antrieb mit Brennstoffzellen. Die Brennstoffzellen sind elektrochemische Wandler, die mit Wasserstoff aus Metallhydrid-Speichern und flüssigem Sauerstoff aus Drucktanks versorgt werden und dadurch Gleichstrom erzeugen. Das „Verbrennungsprodukt“ ist reines Wasser.
Weil die Brennstoffzelle nicht in kürzester Zeit ihre Leistung verändern kann, muss deren Strom in der Bordbatterie zwischengespeichert und dann dem Antrieb zugeleitet werden. Und diese Bordbatterie ist – ein Blei-Säure-Akku. Damit kennt man den modernsten Stromspeicher, den die Marineschiffe heute besitzen. Es gibt immer noch nichts Besseres. Und das seit seiner Erfindung durch den französischen Physiker Gaston Plante im Jahre 1869.
Oder doch ? Die Torpedos der U-Boote werden mit einem anderen Batterietyp ausgerüstet: Silber-Zink-Batterien. Für die Militärs eine gute Wahl, aber für den Antrieb von Autos leider unbezahlbar.


Bringen Batterie-Neuentwicklungen den Durchbruch ?

Die zahlreichen in der Presse erwähnten neuen Batterieentwicklungen sollte man also vor dem Hintergrund der trotz ihrer wenig eindrucksvollen Speicherkapazität nach wie vor in militärischen Anwendungen favorisierten Blei-Säure-Akkus betrachten. Folgendes gab es in letzter Zeit zu lesen:
allem geht es dabei um deren Kosten, Effizienz und Sicherheit. Das DLR-   Institut für Technische Thermodynamik in Stuttgart arbeitet im Verbundprojekt „Li-EcoSafe“ daran.
Es gibt eine Reihe weiterer Entwicklungsarbeiten an verschiedenen
Batterietypen, aber vor allem gibt es eindrucksvolle Ankündigungen für die
angestrebten Ladungskapazitäten, Gewichte und Kosten. Dabei wird oft unglaublich übertrieben. „Der SPIEGEL unternahm im Februar 2017 einen Praxistest mit dem E-Mobil Zoe von Renault. Bei der Autobahn-Richtgeschwindigkeit von 130 km/h war an die im Normzyklus ermittelte Reichweite von 400 km nicht mehr zu denken. Übrig blieben etwa 150 km. Auch die wundersamen Reichweiten der teuren Tesla-Modelle werden in einem realistischen Reiseszenario nicht annähernd erzielt. In der amtlichen Kriechfahrt der Prüfzyklen hat der Elektroantrieb perfekte Bedingungen, um sparsam zu sein. Fernreisen mit heute auf Autobahnen üblichen Geschwindigkeiten zehren die Batterie dagegen im Schnellgang aus“. (SPIEGEL 34/2017: „Der große Schwindel mit den Elektroautos“.)
Derartige Angebereien und Übertreibungen sind typisch für eine Situation, in der es staatliche Fördermittel für Innovationen gibt. Wer nicht bei den behaupteten Projektergebnissen bedenkenlos übertreibt, muss befürchten, von den Beamten kein Geld zu bekommen.
(Der Autor war 30 Jahre im Bundesforschungsministerium in der Projektförderung tätig. Die obige Aussage beruht auf eigener Erfahrung.)
Die oben zitierten Aussagen von Prof. Endres sind dagegen nüchterne
Beschreibungen der Realität. Seine Bewertungen der politischen Zielsetzungen und Erwartungen sollten ernst genommen werden.

Es gibt somit reihenweise gute Gründe dafür, dass auch die derzeitige erneute Beschwörung des Elektroantriebs für Automobile das Schicksal aller vorangegangenen Versuche teilen wird: Die stillschweigende Aufgabe dieser Idee.
Damit das aber nicht erneut geschieht, scheint es jetzt der Plan der Politiker zu sein: Wir zwingen die widerspenstige Automobilindustrie mit immer schärferen Abgas-Grenzwerten, sich dem Elektroauto zuzuwenden und wir subventionieren deren Anschaffung, damit auch die widerspenstigen Autofahrer ihre Zurückhaltung aufgeben. Also wieder einmal Planwirtschaft, die bekanntlich noch nirgends funktioniert hat.


Die Physik gibt keinen Idiotenrabatt

Unsere Medien haben beschlossen, den von den Autokäufern weitgehend boykottierten Durchbruch der Elektroautos, den sie ständig beschwören, propagandistisch herbeizuschreiben. Kürzlich las man sogar von einem „Quantensprung“ in der Batterieentwicklung, der nun bevorstehen würde. Die Quanten wollen aber nicht springen. Dass die Entwicklung einer neuen Technik sehr viel länger dauert, als eine Legislaturperiode des Parlaments, haben die Politiker, die finanzielle Förder-Töpfe mit Steuergeld verwalten und einsetzen, zu ihrem Leidwesen schon immer erfahren müssen. Niemals stellt sich ein Erfolg in 4 Jahren ein. Wenn überhaupt, dauert es mindestens 12 bis 15 Jahre. Misserfolge allerdings zeigen sich schneller, was dazu führt, dass weitere Mittel den bereits verlorenen Millionen hinterher geworfen werden, um die Pleite zeitlich hinauszuschieben – zumindest in die nächste Legislaturperiode, wenn ein anderer auf dem Ministerstuhl sitzt.

Die Entwicklung besserer, neuer Batterien allerdings vollzieht sich in einem Sektor der Physik, in dem es den Forschern und Entwicklungsingenieuren sehr schwer gemacht wird, Erfolge oder gar Durchbrüche zu erzielen. Die mit 136 Jahren nahezu unendliche und erfolgsarme Geschichte der Antriebsbatterien für Autos zeigt vielmehr, dass man eine Technologie für langlebige, bezahlbare und zuverlässige Batterien schon zu Beginn dieses Zeitraums ausgewählt hat – gemeint ist die Blei-Säure-Batterie – und seither mit ihren Limitierungen (Gewicht, und Speicherkapazität) leben muss. Man hat seither eine unbekannte, aber gewiss riesenhafte Menge Geld ausgegeben, um neue, in jeder Hinsicht überlegene Konzepte für die elektrochemischen Speicher zu finden und zur Einsatzreife zu bringen – das einzige, bedingt brauchbare Ergebnis von mehr als 130 Jahren Arbeit scheint die Lithium-Ionenbatterie zu sein, die zumindest Anwendungen mit geringem Strombedarf wie Laptops, Elektrowerkzeuge, Mobiltelefone usw. erobert hat und für diese einen großen Fortschritt darstellt.
Dass diese Technik aber nicht im Entferntesten den ganz normalen Ansprüchen von Autofahrern an ihre Fahrzeuge genügt, ist ebenso klar. Daran ändert auch die nahezu religiöse Verehrung der Tesla-Autos durch eine Gemeinde von Anhängern nichts, die sich damit als Öko-Vorbilder präsentieren wollen und dafür gerne extreme Kosten und reale Gebrauchsnachteile in Kauf nehmen.
Wie es tatsächlich um die Chancen und physikalischen Möglichkeiten einer Realisierung neuer, überlegener Batterietechnologien bestellt ist, beschrieb Prof. Endres. Die Physik ist unpolitisch und bietet Ideologen keine Rabatte.

Gasantrieb: Die bessere Alternative zum Elektroauto


Die politische Verblendung, Autos unbedingt elektrisch antreiben zu wollen, ignoriert eine schon lange eingeführte und bewährte Technik, die unter Umweltgesichtspunkten weitaus besser ist: Autogas und Erdgas. Es gibt dafür bereits ein bundesweites Versorgungsnetz; die Stickoxid-Emissionen liegen in der Nähe des Nullpunktes und wer sich um die CO2-Emissionen sorgt: Sie liegen um 20% niedriger als es die verbreiteten, heutigen Antriebskonzepte können. Die Umrüstung älterer PKW auf diesen Antrieb ist Stand der Technik, aber es gibt selbstverständlich eine Reihe von Autotypen, die schon ab Werk dafür eingerichtet sind.

Sämtliche Nachteile der E-Autos gibt es hier nicht: Die Anschaffung ist ungleich billiger, Reichweitenprobleme existieren nicht, die teure Einrichtung einer Lade-Infrastruktur entfällt, das Auftanken ist einfach und rasch erledigt, das erhebliche, energiefressende Zusatzgewicht einer Großbatterie entfällt und es gibt weiterhin einen nutzbaren Kofferraum. Zudem steigt die Lebensdauer der Motoren.

In Deutschland hat der Kunde die Wahl zwischen zwei Gasantrieben:
Erdgas (CNG) und Autogas (LPG)

Die Motoren können alle drei Brennstoffe nutzen.
Das Tankstellennetz ist vor allem für Autogas bereits stark ausgebaut.
Die Branche macht dazu folgende Angaben:

Autogas LPG                  Erdgas CNG

Tankstellen (D):                       6561                             866
Davon auch mit Benzin:         5093                               711
Umrüster:                               1250                               120

Die Vorteile des Gasantriebs sind beachtlich:
Erdgas:

Benzin)

Autogas:

Vergleich der Reichweite, die mit 10 Euro im Tank erreicht wird:

Anschaffung oder Nachrüstung ?
In der Anschaffung ist ein Erdgasfahrzeug etwas teurer als ein Autogasfahrzeug. Auch die Nachrüstung kostet bei einem Erdgasfahrzeug mehr. Die Nachrüstung ist
allerdings in erster Linie der Regelfall bei Autogas.
Als Faustformel für eine Entscheidung über eine Nachrüstung gilt, dass nach etwa zwei Jahren diese Investition durch die Einsparungen ausgeglichen ist.
Von da an fährt man also sowohl billiger als auch umweltfreundlicher.


Die steuerliche Behandlung von Autogas – eine Fehleinscheidung offenbart die seltsame Vorliebe für den Elektroantrieb


Es gab eine Steuerbegünstigung für Autogas, die von der Bundesregierung zeitlich verkürzt werden sollte. Dies versuchte sie mit dem Entwurf eines Zweiten Gesetzes zur Änderung des Energiesteuer- und des Stromsteuergesetzes, der ein Auslaufen dieser Steuervergünstigung zum Jahresende 2018 vorgesehen hatte.

Die Steuerbegünstigung für Erdgas CNG wurde entspr. dem Ursprungsentwurf bis Ende 2026 verlängert, aber bereits ab 2024 sukzessive abgesenkt.


Das blinde Ignorieren der Chance des Erdgasantriebs und auch der weiterhin vorhandenen physikalischen und finanziellen Barrieren der Elektroautos und deren absehbare erneute Pleite ist keine verantwortungsvolle Politik.
Die Blamage der von der Regierung verschuldeten unaufhaltsam und stetig ansteigenden Treibhausgas-Emissionen Deutschlands – trotz ihres peinlichen „Klimaschutz-Vorreiter“-Selbstlobs – scheint noch nicht genug zu sein. Es wäre aber nicht das erste Mal, dass sich ein Regierungsprogramm als eine Wiederaufführung des Märchens von des Kaisers neuen Kleidern erweist.