Gibt es einen Atmosphärischen Treibhauseffekt? – Teil 2

Hermann Harde, Michael Schnell

Experimente mit Treibhausgasen

1. Versuchsaufbau für Messung mit Treibhaus-Gasen

Im Ersten Teil des Artikels „Gibt es einen Atmosphärischen Treibhauseffekt“ wurde eine einfache Apparatur vorgestellt, die sich von einem Styroporblock in einen Strahlungskanal mit verschiedenen Oberflächenbeschichtungen umwandeln lässt. Mittelpunkt der Untersuchungen war eine heizbare, warme Platte, die gleichzeitig als Wärmequelle und Sensor fungierte. Es konnte nachgewiesen werden, dass rund 70 % der elektrischen Heizleistung durch Strahlungsaustausch und 30 % durch Wärmeleitung von der warmen Platte abgeführt werden.

Der neue Versuchsaufbau besitzt einen wesentlich größeren Strahlungskanal aus poliertem Aluminium als Behälter für die untersuchten Gase. Ähnlich wie beim vorherigen Aufbau befinden sich zwei Platten an beiden Enden des Strahlungskanals, eine obere Platte mit der Fläche AE, im weiteren als Erdplatte bezeichnet, die auf 30 °C erwärmt wird, und eine gekühlte Platte am Boden (Atmosphärenplatte, Atm-Platte), die auf -11,4 °C stabilisiert ist. Die Erdplatte befindet sich in einer Kuppel, die von außen mit warmen Wasser auf 30 °C erwärmt wird, wodurch Wärmeleitungsverluste weitgehend ausgeschlossen werden. Der Abstand der Platten beträgt 111 cm. Es werden keine zusätzlichen Lichtquellen im sichtbaren oder IR-Bereich verwendet, sondern nur die von den beiden Platten emittierte und mit den Gasen interagierende Strahlung untersucht (Abb. 1). Für weitere Details, siehe Harde & Schnell 2022 [1, 2].

Abb. 1: Versuchsanordnung für die Messung mit Treibhausgasen.

Damit werden Bedingungen für den Strahlungsaustausch ähnlich dem Erde-Atmosphären-System (EASy) mit der wärmeren Erdoberfläche und der kälteren Atmosphäre simuliert. Es werden auch Probleme vermieden, die durch einen unpassenden Spektralbereich einer externen Quelle verursacht werden, durch die viel Abwärme im Behälter und an Fenstern erzeugt wird, die aber nur schlecht an die Absorptionsbanden der Treibhaus-Gase (TH-Gase) angepasst ist und hierdurch die Messempfindlichkeit deutlich verringert.

Für ein Probengas im Behälter ist die beheizte Erdplatte gleichzeitig IR-Strahlungsquelle und empfindlicher Detektor für die Rückstrahlung von TH-Gasen. Auf diese Weise wird die reine Strahlungswirkung der Gase als direkte Temperaturerhöhung ΔTE der Erdplatte oder alternativ, bei stabilisierter (konstanter) Temperatur TE, die Leistungseinsparung der Plattenheizung ΔHE bzw. die zugehörige Heizintensität ΔIH = ΔHE/AE gemessen.

Dieser Aufbau ermöglicht weitgehend, Konvektion oder Wärmeleitung zu eliminieren und damit den direkten Einfluss von TH-Gasen unter ähnlichen Bedingungen wie in der unteren Troposphäre reproduzierbar zu untersuchen. Eine spürbare Beeinflussung durch Wärmeleitung kann durch Kontrollexperimente mit Edelgasen ausgeschlossen werden [1, 2].

2. Einige physikalische Grundlagen

2.1 Spektrale Absorption und Emission

In guter Näherung kann angenommen werden, dass die Erdoberfläche, oder hier die geschwärzte Erdplatte und auch die Atm-Platte, als schwarze Körper mit einer Planck-Verteilung strahlen, die nur durch die Temperatur des Körpers bestimmt wird. Auf einer Wellenlängenskala erstreckt sich das jeweilige Spektrum von etwa 4 µm bis in den cm-Bereich, in reziproken Wellenlängen 1/λ als Wellenzahlen (Einheiten: cm-1) von 10 bis 2.500 cm-1.

a) Strahlung von Warm nach Kalt (Vorwärts-Strahlung)

Abb. 2 zeigt das emittierte Spektrum der Erdplatte für TE = 30 °C (Rot). Anders als Stickstoff, Sauerstoff oder Edelgase können die TH-Gase Strahlung in diesem Spektralbereich absorbieren, aber bei ausreichender Temperatur des Gases auch emittieren. Für CO2 z. B. findet die dominierende Wechselwirkung auf den Rotations-Vibrations-Übergängen der Knickschwingung um 670 cm-1 statt (15 µm).

Abb. 2: Strahlungs-Transfer-Rechnung für 20 % CO2 in trockener Luft über 111 cm bei einem Temperaturgradienten von -0,373 °C/cm. Schwarzkörperstrahlung der Platte PE (TE = 30 °C) (Rot Gelb), durchgelassene spektrale Intensität (Dunkelrot u. Grau).

Aufgrund dieser Wechselwirkung zeigt sich als Nettoeffekt, dass die spektrale Intensität auf dem Weg von der warmen zur kalten Platte über die Absorptionsbande kontinuierlich abgeschwächt wird (Gelb), in den Flanken der Bande durch schwächere Linien entsprechend geringere Verluste erleidet (Grau), dabei aber längst nicht so stark abklingt, wie für eine reine Absorption über diese Länge zu erwarten wäre. Für 20% CO2 in trockener Luft ergibt sich dabei für die von der Erd-Platte emittierte Strahlung mit einer Gesamtintensität von 479 W/m2 (Integral über spektrale Intensität) über den Ausbreitungsweg von 111 cm zur Atm-Platte und bei einem Temperaturgefälle von 0,373 °C/cm (TE = 30 °C, TA = -11,4 °C) eine Abschwächung um 25,1 W/m2 oder relativ um 5,2 %. Absorption allein würde zu einer Abnahme um 73,6 W/m2 (15,2 %) führen.

Solch eine Rechnung erfolgt in der Form, dass die Absorption und Emission in jeweils dünnen Schichten von Δz = 1 cm ermittelt wird (Strahlungstransfer-(ST)-Rechnung, Schwarzschild-Gleichung). Für jede Schicht müssen hierzu die spektralen Änderungen, in diesem Fall von mehr als 12.000 Linien, mit ihren druck- und temperaturabhängigen Linienbreiten und Absorptions- bzw. Emissionskoeffizienten berechnet werden, um schließlich nach 111 Berechnungsschritten die transmittierte Intensität zu erhalten.

Dieser Strahlungstransfer entspricht Verhältnissen, wie sie von Satelliten-Messungen bekannt sind, die die ins All abgegebene Strahlung aufzeichnen und die durch den typischen Trichter um 670 cm-1 gekennzeichnet sind. In diesem Spektralbereich wird die einfallende Strahlung unter den gegebenen Bedingungen, in der Atmosphäre ebenso wie hier im Laborexperiment, fast vollständig absorbiert, und die beobachtete Intensität resultiert nur aus der thermischen Emission des Gases, das in größeren Höhen oder hier in der Nähe der Atm-Platte bei reduzierter Temperatur entsprechend schwächer strahlt. In diesem Fall absorbiert CO2 von der Strahlung der PE-Platte zunächst 73,6 W/m2 und emittiert wieder 48,5 W/m2, während im Gasvolumen eine Differenz von 25,1 W/m2 verbleibt.

b) Strahlung von Kalt nach Warm (Rückstrahlung)

Für eine vollständige Strahlungsbilanz ist aber auch die Strahlung in Rückwärtsrichtung von der Atm-Platte zur Erdplatte zu berücksichtigen, die für die hier durchgeführten Untersuchungen zum Treibhaus-Effekt (TH-Effekt) von besonderem Interesse ist. Dies ist in Abb. 3 dargestellt.

Aufgrund des positiven Temperaturgradienten über den Ausbreitungsweg wird jetzt beim Durchqueren der Gasschicht die Strahlung mit einer Anfangsintensität von 266 W/m2 (Blaue Linie, TA = −11,4 °C) um 24,2 W/m2 ‘verstärkt‘, die dem Gasvolumen entnommen werden. Die Eigenstrahlung des Gases in Richtung der wärmeren Erdplatte kann klar als Peak um 670 cm−1 (Dunkelrot mit grauen Flanken) über dem breiteren Spektrum der Atmosphärenplatte identifiziert werden. Auf den stärkeren Linien in der Bandenmitte erreicht die Gas­emission bereits volle Sättigung mit spektralen Intensitäten vergleichbar zu der spektralen Emission der Erdplatte (rote Linie) in diesem Spektralbereich. Die Emission auf den schwächeren Linien ist in Grau dargestellt.

Abb. 3: Strahlungs-Transfer-Rechnung für 20 % CO2 in Luft über 111 cm für einen Temperaturanstieg von 0,373 °C/cm: Rückstrahlung von Atmosphärenplatte und Gas (Dunkelrot und Grau), Strahlung nur von Atmosphärenplatte (Blaue Linie) und spektrale Intensität der Erdplatte (Rot-Gelb).

Die erhöhte Rückstrahlung ist nahezu identisch mit den Verlusten in Vorwärtsrichtung, so dass innerhalb der Beobachtungsgenauigkeit die Gesamtbilanz aus Absorption und Emission des Gases Null ist.

Dies ist ein wichtiger Aspekt, der gegen die Messung der Gastemperatur zum Nachweis des TH-Effektes spricht. Dagegen kann mit dem vorgestellten Aufbau die Rückstrahlung der TH-Gase durchaus als Temperaturanstieg ΔTE der Erdplatte klar erfasst werden.

3. Einwände gegen den Treibhauseffekt

3.1 Molekülstöße

Einer der häufigsten Einwände gegen den TH-Effekt ist, dass TH-Gase nicht in der unteren Atmosphäre emittieren würden, während sie in der Tropopause und Stratosphäre gute Emittenten sind. Als Erklärung geben Kritiker an, dass in der unteren Troposphäre Kollisionsprozesse mit Stickstoff und Sauerstoff jede spontane Emission unterdrücken und die absorbierte Energie nur in kinetische Energie und damit in Wärme umgewandelt wird.

Leider wird bei dieser Interpretation übersehen, dass die typischen Stoßraten von mehreren GHz, wie sie in der unteren Atmosphäre beobachtet werden, sich in einer Höhe von 11 km nur um den Faktor 4–5 verringern und daher immer noch etwa 100 Millionen Mal größer als die spontane Übergangsrate von etwa 1 Hz auf der CO2-Biegeschwingung sind. Wenn eine solche Interpretation wahr wäre, gäbe es auch keine Emission in der höheren Atmosphäre.

Vielmehr kommt es auch ohne vorherige Absorption eines IR-Lichtquants zu einer kontinuierlichen Emission, da neben superelastischen Stößen (stoßbedingte Übergänge von einem höheren zu einem tieferen molekularen Zustand) auch inelastische Stöße stattfinden, die dem Gasgemisch kinetische Energie entziehen und diese wieder umwandeln, um die TH-Gasmoleküle anzuregen (Harde 2013 [3], Unterabschnitt 2.3). Dadurch werden tiefer liegende Energieniveaus bei ausreichender thermischer Energie kontinuierlich neu besetzt und die spontane Emission erfolgt weitgehend unabhängig – parallel zu den superelastischen Stößen – als thermische Hintergrundstrahlung (Harde 2013 [3], Abs. 2.5). Diese Emission wird durch die Lufttemperatur vorgegeben und ist der Hauptgrund dafür, dass mit zunehmender Höhe die Strahlungsintensität deutlich abnimmt. So beträgt sie in 11 km Höhe für CO2 beispielsweise nur 12 % der Intensität, die in einer 100 m dicken Gasschicht in Bodennähe beobachtet wird.

Stöße (adiabatisch und diabatisch) machen sich vor allem als spektrale Verbreitung der Linien bemerkbar. Aber auf diesen Frequenzen und über längere Weglängen kann die Strahlung die gleiche Stärke wie ein Schwarzkörperstrahler erreichen, und im thermischen Gleichgewicht wird dies hauptsächlich durch die Gastemperatur TG gesteuert.

Würden TH-Gase in der unteren Troposphäre nur absorbieren, nicht aber emittieren, würde nicht nur die Rückstrahlung, sondern auch die Aufwärtsstrahlung und damit ein effizienter Wärmetransport nach oben unterdrückt werden. Als Konsequenz könnte sich noch mehr Wärme in den unteren Schichten ansammeln und die Oberfläche stärker aufheizen als jede Rückstrahlung.

3.2 Zweiter Hauptsatz der Thermodynamik

Ein weiterer Einwand ist, dass die Strahlung eines kühleren Körpers nicht von einem wärmeren Körper absorbiert werden kann, da dies gegen den 2. Hauptsatz der Thermodynamik verstoßen würde. Wie bereits in Teil 1 gezeigt [4], wird dies durch die Messungen mit veränderter Temperatur und Oberfläche der kühleren Platte, ebenso wie durch den Demonstrationsversuch mit der Zwischenplatte im Strahlengang klar widerlegt.

Auch Messungen mit dem neuen Aufbau, bei denen die Temperatur der Atm-Platte sukzessive erhöht und die verringerte Heizintensität gemessen wird, bestätigen eindeutig den „gleichzeitigen doppelten Wärmeaustausch durch Strahlung“ (Clausius). In einem geschlossenen System „erfährt der kältere Körper einen Wärmeanstieg auf Kosten des wärmeren Körpers, der wiederum eine langsamere Abkühlungsrate erfährt“. In einem offenen System mit externer Heizung führt die Rückstrahlung des kälteren Körpers klar zu einer höheren Temperatur des wärmeren Körpers als ohne diese Rückstrahlung.

Abb. 4: Gemessene Heizintensität der Erdplatte für eine feste Temperatur TE = 30 °C als Funktion der Strahlungsintensität IA der Atm-Platte (Magenta Rhomben). Ebenfalls aufgetragen ist die theoretische Heizintensität für 100 %-ge Strahlungsübertragung (Blaue Quadrate).

Abb. 4 zeigt die Abnahme der Heizintensität ΔIH, wenn die Temperatur der Atm-Platte von -12,9 auf + 10,9 °C schrittweise erhöht wird. Bei diesen Temperaturerhöhungen steigt zunächst auch die Temperatur der Erdplatte an, was durch eine Verringerung der Heizintensität ausgeglichen wird, bis TE wieder 30 °C beträgt. Auf der Abszisse wird nicht die Temperatur, sondern die Strahlungsintensität IA der Atm-Platte (Magenta) gemäß der Stefan-Boltzmann-Gleichung (ε = 1) aufgetragen, wodurch eine Korrelation von Heiz- mit Strahlungsleistung ermöglicht wird. Der lineare Verlauf bestätigt einen Wärmetransport fast ausschließlich durch Strahlungstransfer entsprechend dem Stefan-Boltzmann-Gesetz, wobei Konvektion (durch die senkrechte Aufstellung) und Wärmeleitungsverluste (durch den beheizten Dom) weitgehend ausgeschlossen werden.

Mit einer solchen Messung lassen sich auch die Verluste beim Strahlungsaustausch zwischen Erd- und Atm-Platte direkt bestimmen. Im Idealfall, wenn die Heizintensität nur von der Rückstrahlung der Atm-Platte abhängen würde, müsste der Anstieg der Geraden fC = 1 sein. Gemessen wird aber ein Anstieg, ein Transmissionsgrad fC von 0,74, wodurch nachgewiesen wird, dass die Rückstrahlung nicht nur von der kalten Atm-Platte, sondern auch von der wärmeren Wand des Strahlungskanals verursacht wird. Das ist ein grundsätzliches Problem bei Strahlungskanälen, worauf schon im ersten Teil hingewiesen wurde [4].

Zum Vergleich ist der theoretische Verlauf mit dem Anstieg fC = 1 dargestellt (Blau), wenn es keine Strahlungsverluste gäbe. Gleichzeitig liefert die reduzierte Heizleistung bei einer beobachteten Temperaturerhöhung eine Eichung für die Temperaturempfindlichkeit der Erdplatte mit λE = 0,083 °C/W⋅m2.

4. Messungen mit Treibhausgasen

Es wurden die TH-Gase CO2, CH4 und N2O über einen weiten Bereich mit Konzentrationsänderungen bis zum 16-fachen der Ausgangskonzentration untersucht. Unsere Messungen zeigen eine deutliche Reaktion auf die TH-Gase, aber auch eine starke Sättigung im Temperaturanstieg mit zunehmender Konzentration. Und sie stimmen hervorragend mit detaillierten Strahlungstransfer-(ST)-Rechnungen überein.

4.1 CO2-Messungen

Abb. 5a zeigt den gemessenen Temperaturanstieg ΔTE an der Erdplatte als Funktion der CO2-Konzentration in trockener Luft. Die Konzentration wurde schrittweise von 1,25 % auf 20 % erhöht (Blaue Rauten).

 

Als direkter Vergleich ist der berechnete Temperaturanstieg ΔTC = λE⋅fCO2⋅ΔICO2 (Magenta-Quadrate) aufgetragen, basierend auf einer ST-Rechnung der CO2-Rückstrahlung ΔICO2 (Grüne Dreiecke), multipliziert mit einem Kalibrierungsfaktor, dem Transmissionsgrad fCO2 der von PW absorbierten Strahlung, und der separat gemessenen Temperaturempfindlichkeit λE der Erdplatte (siehe 3.3.2)

Abb. 5: a) Gemessene Temperaturänderung der Erdplatte als Funktion der CO2-Konzentration (Blaue Rauten) und Rechnung (Magenta Quadrate) mit logarithmischen Fit (Braune Kreuze). ST-Rechnung der Rückstrahlung ΔICO2 (Grün).


b) Gemessene Plattenintensität ΔIH (Blaue Rauten) und berechnete Rückstrahlung
unter Berücksichtigung der Strahlungsverluste mit fCO2⋅ΔICO2 für fCO2 = 0,59 (Grün).

Messung und Berechnung werden gut durch eine logarithmische Darstellung der Form als Funktion der Konzentration CCO2 in trockener Luft dargestellt (Braune Kreuze). Daraus leitet sich ein CO2-Strahlungsantrieb bei Verdopplung der CO2-Konzentration von ΔF2xCO2 = 3,7 W/m2 ab.

Eine unabhängige Messmethode zur Erfassung der Rückstrahlung ergibt sich, wenn mit steigender CO2-Konzentration die PE-Platte auf 30 °C stabilisiert und die eingesparte Heizintensität ΔIH, wie in Kap. 3.2 beschrieben, ermittelt wird.

Abb. 5b zeigt die eingesparte Heizintensität ΔIH für die Erdplatte (blaue Rauten), die erforderlich ist, um mit steigender CO2-Konzentration diese Platte auf 30 °C zu stabilisieren. Die eingesparte Heizintensität ΔIH kann gut durch die berechnete Rückstrahlung ΔICO2 bei einem Transmissionsgrad von fCO2 = 59 % reproduziert werden (Grün). Der Anteil fCO2 ergibt sich aus einer Anpassung an die eingesparte Heizintensität ΔIH. Aufgrund der volumenförmigen Absorption und Abstrahlung unterscheidet sich dieser Transmissionsfaktor leicht für die verschiedenen Gase und auch von dem Wert fC, der die Übertragungseigenschaften des Strahlungskanals ohne TH-Gase charakterisiert.

4.2 CH4-Messung

Messungen für CH4 wurden bei Konzentrationsänderungen von 1,25 bis 10 % in trockener Luft durchgeführt (Abb. 6). Der beobachtete Temperaturanstieg ΔTE der Erdplatte als Funktion der CH4-Konzentration (blaue Rauten) zeigt erneut eine hervorragende Übereinstimmung mit dem berechneten Temperaturanstieg (Magenta Quadrate) basierend auf der berechneten Rückstrahlung ΔICH4 (grüne Dreiecke). Mit Ausnahme der niedrigsten Konzentration weist auch dieses TH-Gas bei diesen Konzentrationsniveaus eine starke Sättigung auf und kann recht gut durch eine logarithmische Kurve (braune Kreuze) mit einem Strahlungsantrieb bei verdoppelter CH4-Konzentration von ΔF2xCH4 = 2,75 W/m2 dargestellt werden. Unter ansonsten vergleichbaren Bedingungen sind dies nur 74 % des CO2-Antriebs. Obwohl die atmosphärische Konzentration von CH4 mit 1,8 ppm mehr als 200-mal kleiner als die von CO2 ist, zeigt auch CH4 über den optischen Weg, der proportional zur Konzentration x Ausbreitungslänge ist, eine stärkere Sättigung in der Atmosphäre (siehe auch: http://hharde.de/climate %20c.htm).

Abb. 6: Gemessene Temperaturänderung der Erdplatte als Funktion der CH4-Konzentration in trockener Luft (Blaue Rauten) und entsprechende Berechnung (Magenta). Überlagert ist ein logarithmischer Fit (Braun) und die ST-Rechnung der rückgestrahlten Intensität ΔICH4 (Grün).

4.3 N2O-Messung

Die N2O-Messungen wurden für Konzentrationen von 1,25 % bis 15 % durchgeführt (Abb. 7).

Abb. 7: Gemessene Temperaturänderung der Erdplatte als Funktion der N2O-Konzentration in trockener Luft (Blaue Rauten) und entsprechende Berechnung (Magenta). Überlagert ist ein logarithmischer Fit (Braun) und die ST-Rechnung der rückgestrahlten Intensität ΔIN2O (Grün).

Die gemessene Temperaturänderung ΔTE der Erdplatte (blaue Rauten) lässt sich wiederum für ansteigende N2O-Konzentration gut durch die berechnete Änderung ΔTC = λE⋅fN2O⋅ΔIN2O (Magenta Quadrate) reproduzieren. Die berechnete N2O-Emission ΔIN2O wird durch grüne Dreiecke wiedergegeben. Bei Anpassung der gemessenen Temperatur durch eine logarithmische Kurve (braune Kreuze) ergibt sich ein N2O-Strahlungsantrieb bei doppelter Konzentration von ΔF2xN2O = 5,0 W/m2. Dies ist 35 % größer als der CO2-Strahlungsantrieb.

5. Diskussion der Ergebnisse

5.1 Unterschiede zur Atmosphäre

Der vorgestellte Versuchsaufbau hat sich als geeignet erwiesen, den atmosphärischen TH-Effekt nachzuweisen und im Labor zu demonstrieren. Obwohl die Weglänge durch die Atmosphäre etwa um den Faktor 80.000 größer ist als die Messkammer, wird dies durch eine 500-fach höhere Konzentration für CO2 und eine 50.000-fach höhere CH4-Konzentration teilweise kompensiert und für N2O mit einer fast 500.000-mal höheren Konzentration im Vergleich zu den Meeresspiegelwerten sogar deutlich überkompensiert. Nicht so sehr die absoluten Werte sind dabei relevant, wichtiger ist der optische Weg als Produkt von Absorptionskoeffizient und Weglänge.

Andererseits ist der Temperaturgradient (Lapse-Rate) über die Troposphäre mit 6,5 °C/km 5.700-mal kleiner als in dem hier verwendeten Aufbau, während die absolute Temperaturdifferenz fast vergleichbar ist.

Am wichtigsten für den Nachweis des TH-Effektes und der Rückstrahlung von IR-aktiven Gasen ist jedoch deren Emission bei gleichzeitigen Stoßprozessen und dies unter Bedingungen, wie sie in der unteren Troposphäre anzutreffen sind. Die Experimente bestätigen damit definitiv, dass TH-Gase auf ihren Übergängen strahlen und innerhalb einer optisch dicken Schicht sogar vergleichbar zu einem Schwarzkörperstrahler mit gleicher Temperatur wie das Gas emittieren.

Unter realen atmosphärischen Bedingungen wird die Rückstrahlung der TH-Gase durch die spektral viel breitere Strahlung von Wolken überlagert, die in erster Näherung als graue Emitter mit einer durch ihre Unterseite gegebenen Temperatur beschrieben werden können. In den mit den TH-Gasen durchgeführten Experimenten werden Wolken durch die Atm-Platte und Kanalwände ersetzt. Ihre Strahlung ändert sich stark mit der Temperatur TA der Atm-Platte und simuliert auf diese Weise den Einfluss von Wolken in unterschiedlichen Höhen. Dies bestimmt aber auch die Größe des TH-Gasbeitrags, der vom Temperaturunterschied zwischen den Platten und damit von der Temperaturdifferenz abhängt. Auf die Atmosphäre übertragen bedeutet dies, dass bei Wolken die Rückstrahlung größer ist als bei klarem Himmel, der relative Beitrag durch TH-Gase jedoch abnimmt.

5.2 Reproduzierbarkeit und Genauigkeit

Die Reproduzierbarkeit der Messungen hängt stark von den Gleichgewichtsbedingungen des Aufbaus vor dem Befüllen der Messkammer mit dem TH-Gas ab, und dies gilt auch für die weitere Aufzeichnung von Daten. Die Temperaturanzeige ist auf ±0,13 °C begrenzt und bestimmt somit wesentlich die Genauigkeit der Messungen. Auch die elektrische Plattenheizung wird durch die Temperaturablesung beeinflusst, da jede Anfangs- und Endaufzeichnung zur Ermittlung der Differenz ΔHE zwei Temperaturmessungen erfordert. Dies ist der Hauptgrund für kleinere Abweichungen von einem Messdurchlauf zum nächsten. Zusätzliche Störungen gehen auf geringfügige Schwankungen der Raumtemperatur zurück, die innerhalb von ±0,2 °C geregelt werden kann.

Der Fehler für eine Einzelmessung der Temperaturänderung ΔTE und der reduzierten Heizleistung ΔHE wird bei den niedrigeren Konzentrationen auf ±20 % und bei den höheren Konzentrationen auf etwa ±10 % geschätzt. Die Gesamtgenauigkeit wird jedoch durch mehrmaliges Wiederholen der Messungen weiter verbessert. Alle Daten stellen das Mittel aus 5 Durchläufen dar. Dies ermöglicht es, den allgemeinen Trend einer Serie innerhalb von ±5 % zu bestimmen.

5.3 Vergleich mit der Literatur

Es zeigt sich für alle drei Gase eine gute Übereinstimmung zwischen Messung und Berechnung, sowohl für die Temperaturdaten als auch für die Plattenheizung. Insbesondere die zunehmende Sättigung und die charakteristische Abflachung mit steigender Gaskonzentration werden durch die Berechnungen gut bestätigt und schließen einen größeren Einfluss durch Wärmeleitung aus. Gleichzeitig zeigen diese Untersuchungen die nur geringe weitere Auswirkung auf die globale Erwärmung bei steigenden Treibhausgaskonzentrationen.

Während sich die Übereinstimmung in den Absolutwerten von gemessenen und berechneten Daten z.T. daraus erklärt, dass zur Ermittlung der Transmissionsgrade fGas – und damit für die entsprechende Skalierung der gemessenen Rückstrahlung und der Temperaturdaten – die Rechnungen als Referenz herangezogen werden, stellt die nahezu exakte Übereinstimmung des abgeleiteten Strahlungsantriebs für CO2 mit ΔF2xCO2 = 3,70 W/m2 eher eine zufällige Übereinstimmung mit der Literatur dar (siehe AR6 [5]), da die Messungen hier unter deutlich anderen Bedingungen durchgeführt wurden.

Dennoch ermöglicht dies einen direkten Vergleich untereinander, hierzu müssen allerdings die verschiedenen Auswirkungen berücksichtigt werden, wie z. B. eine sich ändernde Druckverbreiterung der Absorptionslinien über die Weglänge in der Atmosphäre, die Interferenz mit anderen TH-Gasen wie Wasserdampf, die unterschiedliche Bodentemperatur, und die sich ändernde Rückstrahlung mit unterschiedlicher Wolkenhöhe, Bewölkung und Emissionsgraden. Daraus lässt sich ein Strahlungsantrieb von ΔF2xCO2 = 3,4 W/m2 berechnen, und zusammen mit einer Planck-Sensitivität von λP = 0,31 °C/(W/m2) (siehe AR6 [5]) ergibt dies eine Basis-Gleichgewichts-Klimasensitivität (Temperaturanstieg bei verdoppelter CO2-Konzentration, ohne Rückkopplungen) von ECSB = λP⋅ΔF2xCO2 = 1,05 °C. Dieses Ergebnis stimmt hervorragend mit dem Coupled Model Intercomparison Project Phase 5 (CMIP5) überein.

Allerdings zeigen eigene Berechnungen unter Einbeziehung von Rückkopplungen, dass Wasserdampf im Gegensatz zu den Annahmen des IPCC nur noch zu einer marginalen positiven Rückkopplung beiträgt und die Verdunstung an der Erdoberfläche sogar zu einer deutlichen weiteren Reduzierung der Klimasensitivität auf nur noch ECS = 0,68 °C führt (Harde 2017 [6], Harde 2022 [7]). Dies ist weniger als ein Viertel des IPCC-Wertes mit ECS = 3 °C (AR6 [5]) und 5,4-mal kleiner als der Mittelwert von CMIP6 mit ECS = 3,78 °C.

Entsprechende Werte für CH4 und N2O können nur indirekt mit der Literatur verglichen werden, da hierfür nur Werte für den ppb-Bereich (parts per billion) angegeben werden, bevor Sättigungseffekte auftreten. Dennoch erlauben ihre relativen Werte zu CO2 durchaus eine Abschätzung ihrer Beiträge zur globalen Erwärmung, die für CH4 nicht mehr als 2 % und für N2O weniger als 1 % betragen.

Eine faustdicke Überraschung ist Methan, das tatsächlich einen geringeren Strahlungsantrieb als CO2 hat und angesichts seiner derzeitigen Konzentration von nur 1,89 ppm eindeutig kein Super-Treibhausgas ist, das Anlass zur Sorge geben sollte, wie uns manche Medien oder Klimaforscher glauben machen wollen.

6. Zusammenfassung

Die vorgestellten Messungen und Berechnungen bestätigen eindeutig die Existenz eines atmosphärischen TH-Effektes und zeigen entgegen dem oft falsch interpretierten zweiten Hauptsatz der Thermodynamik, dass ein wärmerer Körper durch die Strahlung eines kälteren Körpers, hier die Strahlung der gekühlten Platte und/oder eines TH-Gases, weiter erwärmt werden kann (siehe auch EIKE, Teil 1 [4]).

Sie bestätigen auch, dass TH-Gase unter Bedingungen, wie sie in der unteren Atmosphäre herrschen, auch IR-Strahlung in „Rückwärtsrichtung“ aussenden. Gleichzeitig offenbaren die theoretischen Untersuchungen die prinzipiellen Schwierigkeiten, den TH-Effekt als steigende Temperatur des Gases zu messen. Solche Versuche zeigen hauptsächlich eine Erwärmung durch Absorption von NIR oder IR-Licht über die Gefäßwände, während nur zu einem geringeren Grad Absorption durch die Gase erfolgt.

Solche Experimente übersehen oft auch, dass der Treibhauseffekt hauptsächlich das Ergebnis einer Temperaturdifferenz über den Ausbreitungsweg der Strahlung und damit der ‚Lapse-Rate‘ in der Atmosphäre ist.

Ein verminderter TH-Effekt bei reduzierter Temperaturdifferenz zwischen den Platten, wie dies analog auch durch Wolken in der Atmosphäre erfolgen kann, lässt sich klar nachweisen.

Unsere Ergebnisse zeigen nur einen geringen Einfluss von TH-Gasen auf die globale Erwärmung, die offensichtlich viel stärker von natürlichen Einflüssen wie dem solaren Strahlungsantrieb und Ozeanischen Oszillationen dominiert wird (siehe z. B. Connolly et al. 2021 [8]; Harde 2022 [7]). Es gibt also keinen Grund für Panik und Klimanotstand, vielmehr ist es höchste Zeit, zu einer konsolidierten Klimadiskussion zurückzukehren, die sich auf Fakten konzentriert und auch die Vorteile von Treibhausgasen einbezieht.

7. Referenzen

  1. H. Harde, M. Schnell, 2022: Verification of the Greenhouse Effect in the Laboratory, Science of Climate Change, Vol. 2.1, pp. 1-33, https://doi.org/10.53234/scc202203/10.
  2. H. Harde, M. Schnell, 2022: Nachweis des Treibhauseffekts im Labor, PDF-Datei
  3. H. Harde, 2013: Radiation and Heat Transfer in the Atmosphere: A Comprehensive Approach on a Molecular Basis, International Journal of Atmospheric Sciences (Open Access), vol. 2013, http://dx.doi.org/10.1155/2013/503727
  4. M. Schnell, H. Harde, 2024: Gibt es einen Atmosphärischen Treibhaus-Effekt? -Teil 1, EIKE 2024
  5. Sixth Assessment Report (AR6) of the IPCC, 2021: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V. et al. (eds.)]. Cambridge University Press.,
    https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf
  6. H. Harde, 2017: Radiation Transfer Calculations and Assessment of Global Warming by CO2, International Journal of Atmospheric Sciences, Volume 2017, Article ID 9251034, pp. 1-30, https://www.hindawi.com/journals/ijas/2017/9251034/, https://doi.org/10.1155/2017/9251034.
  7. H. Harde, 2022: How Much CO2 and the Sun Contribute to Global Warming: Comparison of Simulated Temperature Trends with Last Century Observations, Science of Climate Change, vol. 2, no 1, pp 105 -133, https://doi.org/10.53234/scc202206/10
  8. R. Connolly, W. Soon, M. Connolly, S. Baliunas, J. Berglund, C. J. Butler, R. G. Cionco, A. G. Elias, V. M. Fedorov, H. Harde, G. W. Henry, D. V. Hoyt, O. Humlum, D. R. Legates, S. Lüning, N. Scafetta, J.-E. Solheim, L. Szarka, H. van Loon, V. M. V. Herrera, R. C. Willson, H. Yan and W. Zhang, 2021: How much has the Sun influenced Northern Hemisphere temperature trends? An ongoing debate, Research in Astronomy and Astrophysics 2021 Vol. 21 No. 6, 131(68pp),
    http://www.raa-journal.org/raa/index.php/raa/article/view/4906

Zur Sicherstellung sämtlicher Indizes und anderer evtl. Buchstabendarstellung zwischen Word und dieser Darstellung hier nochmal Gibt es einen Atmosphärischen Treibhauseffekt Teil 2 Vollständig




Der Beweis: Stromnetz 2006 Vs 2024 – Instabil wie niemals zuvor! Blackout voraus – Netzbetreiber

Was wenn der „Blackout“ von 2006 in Deutschland und Europa heute passieren würde? Wäre das Netz noch stabil genug?. 15 Mio Menschen waren da ohne Strom. Was wenn das heute passieren würde? Blackout?

Eine Überprüfung von Outdoor Chiemgau

 

Der YT-Blogger Backout-News von Outdoor Chiemgau hat eine erschreckende Rechnung aufgestellt. Nach Angabe der 4 Netzbetreiber haben sie in einer Analyse vom September 2023 berechnet (hier) , das unser heutiges Stromnetz schon bald nicht mehr in der Lage ist, den Ausfall, den die Abschaltung bei Überführung des Kreuzfahrtschiffes über die Weser in Westeuropa am 4. November 2006 um rd. 22:00 Uhr erzeugt hatte, zu beherrschen. Bei der dazu alles bestimmenden Momentanreserve mit Frequenzgradienten von 1 Hz/s fehlten schon bis 2030 bereits 90 %. Von mindestens 496 GWs oder 19,8 GW die benötigt wurden, sind dann nur noch 52,7 GWs vorhanden.(Bild 1), oder 2,1 GW Und weiter nach deren Angaben, dürfen wir bis zu 2030 mehr als 4000 h ohne diesen Ausgleich dastehen- Bild 2 Ein Bild, das Text, Screenshot, Diagramm, Zahl enthält. Automatisch generierte Beschreibung .Bild 1

Ein Bild, das Text, Screenshot, Diagramm enthält. Automatisch generierte Beschreibung Bild 2

Und das war bevor die Regierung, die weitere Abschaltung von 15 Kohlekraftwerksblöcken mit rd. 4,4 GW  am 1.April von RWE beschlossen wurde.

 




Gibt es einen Atmosphärischen Treibhauseffekt? – Teil 1

Michael Schnell, Hermann Harde

1. Vorbemerkungen

Die Emissionen fossiler Brennstoffe werden für einen Klimanotstand mit katastrophalen Folgen für unseren Planeten verantwortlich gemacht, wenn die weltweiten anthropogenen Emissionen nicht rasch gestoppt werden. Grundlage dieser Vorhersagen ist der atmosphärische Treibhauseffekt (TH-Effekt), der auf Jean-Baptiste Joseph Fourier im Jahr 1824 zurückgeht [1]. Er untersuchte den Energiehaushalt der Erde, um die Oberflächentemperatur zu erklären. Dabei ging er davon aus, dass sich die Atmosphäre ähnlich wie ein Glasfenster verhält, das für die Sonnenstrahlung transparent ist, aber die vom Boden emittierte Infrarotstrahlung (IR) blockiert. Der Wärmeaustausch durch Konvektion oder Wärmeleitung mit der Umgebung wurde in diesem Modell weitgehend vernachlässigt.

Weiter ist festzustellen, dass selbst viele Klimaexperten nicht wirklich zur Kenntnis nehmen, wie sich Treibhausgase (TH-Gase) tatsächlich auf unser Klima auswirken. Dies führt häufig zu dramatischen Fehlinterpretationen in populärwissenschaftlichen Veröffentlichungen, sogar in der Zusammenfassung für politische Entscheidungsträger (6. Sachstandsbericht AR6 des IPCC [2]). Andererseits führen diese Übertreibungen bei Menschen mit klarem Gespür und Verständnis für reale physikalische Sachverhalte zu starken Zweifeln an einem vom Menschen verursachten Klimawandel und der Existenz des Treibhauseffekts, der fast ausschließlich auf theoretischen Überlegungen beruht.

Der Hauptgrund für diese Zweifel ist ein fehlender, nachvollziehbarer Nachweis des TH-Effektes, obwohl es in den letzten 120 Jahren viele Versuche gab, diesen Effekt durch mehr oder weniger einfache Laborexperimente zu bestätigen oder zu widerlegen. Direkte Messungen an der Atmosphäre werden zu stark durch Konvektions-, Turbulenz- oder Streueffekte beeinflusst, um den relativ geringen Beitrag von Treibhausgasmolekülen zu einer lokalen Erwärmung der Luft oder der Erdoberfläche zu quantifizieren, dies bei lokalen Tag-Nacht-Schwankungen bis zu 60 °C und durch saisonale Zyklen sogar bis zu 100 °C.

1.1 Historische Anmerkungen

Eine der wesentlichen experimentellen Untersuchungen geht auf R. W. Wood (1909) [3] zurück, der zwei Kästen mit normaler Luft verwendete. Eine Box war mit einem Glasfenster abgedeckt, das für Sonnenlicht transparent war, aber IR-Strahlung blockierte, die andere war mit einem NaCl-Fenster abgedeckt, das ebenfalls für IR-Licht transparent war. Seine Messungen zeigten eine deutliche Erwärmung des Innenraums, jedoch keinen oder nur einen vernachlässigbaren Temperaturunterschied zwischen den Boxen.

Daraus schlossen Wood und andere Autoren bei der Wiederholung dieses Experiments (z. B. Allmendinger 2006 [4], Nahle 2011 [5]), dass Infrarotstrahlung, die durch das NaCl-Fenster entweichen kann, nicht oder nur vernachlässigbar zur Erwärmung beiträgt, während der beobachtete Temperaturanstieg in beiden Boxen – anders als Fouriers Interpretation – ausschließlich durch einen unterdrückten konvektiven Wärmeaustausch mit der Umgebung erklärt wird und nicht mit irgendeiner Form von eingeschlossener Strahlung zusammenhängt.

Aber Experimente, die nicht nur eine einzige Temperatur für jede Box messen, sondern die Temperatur am Boden und der Oberseite des Innenraums aufzeichnen, finden bei der Box mit NaCl-Fenster einen um 5°C größeren Temperaturabfall vom Boden bis zur Decke als bei der Glasbox. Die Temperatur am Boden ist dagegen bei beiden Boxen nahezu identisch (V. R. Pratt 2020 [6]). Diese Ergebnisse werden grundsätzlich mit einem etwas anderen Aufbau bestätigt, der eine interne elektrische Heizung anstelle externer Lichtquellen verwendet (E. Loock 2008 [7]). Eine solche Erwärmung vermeidet Unterschiede in der einfallenden Strahlung, die sonst Fenster aus unterschiedlichen Materialien mit unterschiedlichen Verlusten passieren muss. Für den Glaskasten konnte eine höhere Temperatur von 2,5 – 3°C gefunden werden, und beim Austausch des Glases durch eine polierte Aluminiumfolie steigt die Temperatur sogar um weitere ≈ 3°C.

Während die Wood’schen Experimente die Frage beantworten können, ob und inwieweit eine verringerte IR-Transmission zur Erwärmung eines Behälters, oder entsprechend der Troposphäre, beitragen kann, geben sie keine Auskunft über die Wechselwirkung von Treibhausgasen mit IR-Strahlung. Es blieb also weiterhin die Frage, inwieweit solche Gase die IR-Strahlung zumindest teilweise zurückhalten können und inwieweit die einfache Absorption durch TH-Gase oder die umstrittene Rückstrahlung zu einer zusätzlichen Erwärmung des Bodens beitragen könnten. Für solche Untersuchungen ist es erforderlich, einen Behälter mit dem zu untersuchenden Gas zu füllen und dieses mit einer Referenzmessung mit Luft oder einem Edelgas zu vergleichen.

Mittlerweile wurden unterschiedliche Ansätze verfolgt, teils mit äußerer Bestrahlung oder mit innerer Erwärmung (siehe z. B. Loock [7]), teils mit Messung der Gastemperatur oder der IR-Strahlung in Vorwärts- und Rückwärtsrichtung (Seim & Olsen 2020 [8]). Aber entweder konnte keine Erwärmung festgestellt werden oder der beobachtete Temperaturanstieg konnte bei näherer Betrachtung nicht auf einen IR-Strahlungseffekt zurückgeführt werden.

Leider wurden im Internet einige fehlerhafte Demonstrationen mit angeblichen Temperaturunterschieden von mehr als 10°C präsentiert, die die starke Wirkung der Treibhausgase beweisen sollten (siehe z. B. Ditfurth 1978 [9]). Bei näherer Betrachtung zeigt sich jedoch, dass die höhere Temperatur hauptsächlich durch einen Schichtungseffekt, verbunden mit einer erhöhten Isolation, verursacht wird, wenn schwereres CO2 von unten in ein Gefäß eingefüllt wird (Schnell 2020 [10]). Bei diesen angeblichen Demonstrationen des Treibhauseffektes wird übersehen, dass reines CO2 trotz Erwärmung eine höhere Dichte als die darüber befindliche Luft hat und dadurch keinen thermischen Auftrieb verursacht. Ohne anschließende Homogenisierung führt dies zu einem erhöhten Temperaturanstieg in der CO2-Schicht. Solche Experimente zeigen lediglich, dass CO2 IR-Strahlung absorbieren kann, was eigentlich nicht überraschen sollte.

Und wirklich problematisch ist es, wenn einer der Preisträger des Friedensnobelpreises 2007 eine Web-basierte Kampagne mit mehreren Werbespots im Fernsehen initiiert, die darauf abzielt, das Bewusstsein für eine Klimakrise zu schärfen. Als „Beweis“ wird ein völlig unrealistisches und nicht reproduzierbares Video-Experiment des TH-Effekts präsentiert (Al Gore’s Climate 101 Video Experiment 2001 [11]), das mittlerweile durch mehrere Überprüfungen als fehlerhaft entlarvt wurde (Watts 2011 [12], Solheim 2016 [13]).

Solche Experimente werden leider weiter genutzt, um weltweit Angst zu verbreiten und unsere Gesellschaft mit der Botschaft zu indoktrinieren, dass wir unsere Erde nur retten können, indem wir künftig alle Treibhausgasemissionen stoppen. Solche Experimente untergraben alle ernsthaften Versuche, den erwarteten Einfluss von Treibhausgasen auf unser Klima zu diskutieren und zu analysieren. Politische Vorstellungen, Spekulationen oder religiöser Glaube sind keine ernsthaften Berater, um eine erfolgreiche Zukunft zu sichern. Unser Wissen und unser technischer Fortschritt basieren auf seriösen wissenschaftlichen Grundlagen.

1.2 Ziel der Untersuchungen

Es ist höchste Zeit, die endlosen Spekulationen über die katastrophalen Auswirkungen oder die Nichtexistenz eines atmosphärischen TH-Effektes zu beenden und sich auf verlässliche Untersuchungen zu konzentrieren, die es ermöglichen, die Größe und den begrenzenden Einfluss von Treibhausgasen durch anthropogene Emissionen fossiler Brennstoffe auf die globale Erwärmung zu quantifizieren. In einer aktuellen Arbeit (Harde & Schnell 2022 [14]) wird der theoretische Hintergrund des TH-Effektes zusammengefasst, und es werden erstmals quantitative Messungen für die Treibhausgase CO2, CH4 und N2O unter ähnlichen Bedingungen wie in der unteren Troposphäre vorgestellt. Eine gekürzte, weniger technische Version steht als PDF zur Verfügung [15] und wird in komprimierter Form im zweiten Teil dieses Artikels wiedergegeben.

Um den Strahlungsaustausch zwischen Körpern unterschiedlicher Temperatur aufzuzeigen und die Besonderheiten des TH-Effektes hervorzuheben, wurden detaillierte Modell-Untersuchun­gen durchgeführt, bei denen die TH-Gase durch eine geschwärzte Metallplatte in einem Strahlungskanal ersetzt werden (Schnell & Harde 2023 [16]). Als Einführung in das grundlegende Prinzip des atmosphärischen TH-Effektes werden im ersten Teil dieses Artikels zunächst diese Untersuchungen vorgestellt, bevor im zweiten Teil auf die TH-Gase eingegangen wird.

2. Demo-Experiment mit Metallplatte

2.1 Der Strahlungskanal

Der Versuchsaufbau zur Demonstration des Strahlungsaustausches und des TH-Effekts besteht aus einem vertikalen Hohlzylinder aus Styropor. Er ist als modularer Aufbau konzipiert und kann daher leicht für verschiedene Experimente umgebaut werden (Abb. 1, Details siehe: Schnell & Harde 2023 [16]).

Abb. 1: Schematischer Versuchsaufbau. Die Indizes stehen für: W = warm, C = cold, CP = cold polished und I = Intermediate.

Im Styropor-Behälter befinden sich zwei parallele Metallplatten PW und PC im Abstand von 60 cm und zur Simulation des TH-Effektes eine Zwischenplatte PI. Die obere Platte PW ist geschwärzt und kann durch eine elektrische Heizung der Leistung HW beheizt werden. Die untere Platte PC ist ebenfalls geschwärzt und wird durch einen Luftkühler in ihrer Temperatur stabilisiert. Sie ist CPC kälter als die Raumtemperatur TRaum. Für ein Kontrollexperiment kann diese untere Platte durch eine polierte PCP-Scheibe mit sehr geringem Absorptionsvermögen und damit geringem Emissionsvermögen ersetzt werden, um die Intensität der Gegenstrahlung durch Reflektion zu erhöhen.

Die Innenseite des Styroporbehälters (als Strahlungskanal bezeichnet) kann mit einem Aluminiumrohr oder einer dünnen Al-Folie ausgekleidet werden, wodurch IR-Strahlung durch Mehrfachreflexion und Streuung effizient von einer Platte zur anderen geleitet wird. Dies ermöglicht einen intensiven Strahlungsaustausch zwischen den Platten, und trotz teilweise leichter Absorptionsverluste an der Innenwand werden ohne Zwischenplatte im Kanal mehr als 70 % der zugeführten Heizleistung HW durch IR-Strahlung abgeführt.

Ein kleinerer Teil der über die Platte PW zugeführten Heizleistung HW fließt durch einen mechanischen Wärmefluss über die Styroporisolierung nach außen ab (siehe hierzu Tabelle 2).

Temperatur-Sensoren rund um den Strahlungskanal detektieren diese Wärmeströme.

Durch die senkrechte Anordnung des Strahlungskanals stellt sich eine stabile Luft-Schichtung (oben warm, unten kalt) ein, die Konvektion als Wärmetransport ausschließt.

Die wichtigsten Informationen für die Untersuchungen liefern aber die Temperatur TW und die Heizleistung HW der warmen Platte PW. Diese Platte fungiert gleichzeitig als Wärmequelle und Sensor.

2.2 Gegenstrahlung

Ziemlich kontrovers diskutiert wird die These, dass ein erhitzter Körper durch die Strahlung eines kälteren Körpers oder Gases weiter erwärmt werden kann. Dies wird als Verletzung des zweiten Hauptsatzes der Thermodynamik angesehen, obwohl Clausius als einer der Väter dieses Gesetzes einen gegenseitigen Wärmeaustausch durch Strahlung nie in Frage gestellt hat.

Während die IR-Emission der beheizten Platte PW eindeutig durch ihre Temperatur TW und den Emissionsgrad εW ≈ 1 der Platte definiert wird, ist die Strahlung aus der Umgebung, die sogenannte Rückstrahlung, naturgemäß deutlich komplexer. Diese Strahlung resultiert aus einer Überlagerung von Emissionen, Reflexionen und Strahlungsverlusten, die von der gekühlten Platte und der Kanalwand des Hohlzylinders verursacht werden. Die Auswirkung der Rückstrahlung kann durch Variation der Oberfläche und der Temperatur der Grundplatte demonstriert werden. Für diese Messungen wird die Zwischenplatte PI entfernt und das Aluminiumrohr im Strahlungskanal verwendet

Die folgenden Untersuchungen verdeutlichen, wie die Temperatur der konstant beheizten Platte PW durch die Rückstrahlung beeinflusst wird.

a) Grundplatte PC auf beiden Seiten schwarz beschichtet:
Die ersten 100 Minuten zeigen ein thermisches Gleichgewicht, wobei Platte PW eine Temperatur TW = 24,0 °C erreicht. Die schwarz beschichtete PC-Grundplatte wird dann langsam von den vorherigen 17 °C auf 11 °C abgekühlt (Abb. 2a, blaue Linie), wodurch ihre IR-Emission SC nach dem Stefan-Boltzmann-Gesetz abnimmt. Für die PW-Platte vergrößert sich dadurch der Strahlungsaustausch als Differenz aus abgegebener (SW) und empfangener Leistung (SC):

Dabei ist σ die Stefan-Boltzmann-Konstante mit σ = 5.67⋅10-8 W/m2/K4 und AW,C die Fläche der warmen bzw. kalten Platte. Wegen der stärkeren Wärmeabfuhr muss die Temperatur TW entsprechend sinken, wodurch abgeführte und zugeführte Leistung wieder gleich groß werden (Abb. 2a).

Der Strahlungsaustausch, die Strahlungsbilanz zweier unabhängiger Strahler nach Gl. (1), wurde erstmals von Josef Stefan (1879) [17] formuliert und kann mit diesem Experiment auf einfache Weise gezeigt werden.

Abb. 2: Auswirkung der Gegenstrahlung auf die Temperatur TW der beheizten Platte PW, a) durch eine geschwärzte Grundplatte PC, b) durch eine polierte Platte PCP.

b) Grundplatte PCP außen geschwärzt und innen auf Hochglanz poliert:
Im thermisches Gleichgewicht wird unter ansonsten gleichen Bedingungen eine 4,9 °C höhere Temperatur TW = 28,9 °C erreicht. Ursache ist der deutlich verringerte Absorptionsgrad αCP der polierten Platte, der eine Zunahme des Reflexionsgrades entsprechend rCP = 1 – αCP bedingt. Anstelle der IR-Emission der Platte PCP wird die Rückstrahlung SC jetzt weitgehend durch die reflektierte, intensivere Strahlung der warmen Platte erzeugt, was nach Gleichung (1) eine geringere Wärmeabfuhr und damit eine höhere TW-Temperatur bedeutet (Abb. 2b).

Im Gegensatz zur geschwärzten Platte zeigt sich beim Abkühlen der PCP-Platte kaum eine Rückwirkung auf die Temperatur TW der oberen Platte. Dies lässt sich durch den geringeren Emissionsgrad εCP αCP der polierten Platte und die Temperaturunabhängigkeit der Reflexion an der Platte PCP erklären.

Für den Fall von reflektierenden Oberflächen und einer geringen Strahlungsbilanz hat Stefan den Strahlungs­austauschgrad E < εW, εC << 1 eingeführt, der mit dem Experiment b) demonstriert werden kann.

Um es noch einmal zu betonen: Die Grundplatten sind 60 cm von der geheizten Platte PW entfernt und eine Variation ihrer Oberflächengestaltung reicht aus, um starke Temperaturunterschiede der Platte PW zu bewirken, die nur durch Veränderungen der IR-Rückstrahlung erklärbar sind. Eine Veränderung der Wärmeleitung als mögliche Ursache für diese Effekte kann bei diesen Experimenten ausgeschlossen werden, da der grundlegende Versuchsaufbau bei diesen Experimenten nicht verändert wurde und die Temperaturen des Strahlungskanals T1 bis T4 annähernd konstant blieben.

2.3 Quantifizierung der Wärmeströme

Die der PW-Platte zugeführte Heizleistung HW wird sowohl durch IR-Strahlung als auch durch einen mechanischen Wärmestrom JQ abgeführt. Da im thermischen Gleichgewicht nur so viel Wärme abfließen kann, wie durch die Heizung zugeführt wird, addieren sich Strahlungstransport ΔSWC und Wärmeleitung JQ zur Heizleistung HW

Das Verhältnis der beiden Wärmeströme lässt sich bestimmen, wenn eine der beiden Größen ermittelt werden kann, da die andere Größe dann die Differenz zu HW ist.

Der mechanische Wärmestrom JQ ergibt sich nach Fourier in guter Näherung aus der Wärmeleitfähigkeit λS der Styroporisolierung, ihrer Dicke d und Oberfläche AS sowie der Temperaturdifferenz ΔT zur Umgebung:

Dieser Ansatz ist jedoch nicht hilfreich, da unterschiedliche Temperaturen, Dicken und Oberflächen der Styroporisolierung der Versuchsapparatur berücksichtigt werden müssten.

Der Wärmestrom JQ kann jedoch direkt gemessen werden, indem der Strahlungskanal vollständig mit zwölf 5 cm dicken Styroporscheiben gefüllt wird. Es entsteht ein Styroporblock (ohne Strahlungskanal) mit den gleichen Außenabmessungen und den zwei Platten. In diesem Fall kann die zugeführte Wärme HW nur durch den mechanischen Wärmestrom JQ abgeführt werden, wodurch Gl. (2) übergeht in:

 

Die Berechnungsgrundlage für die Bewertung der Wärmeströme ist der Temperaturanstieg ΔTW, die Temperaturdifferenz vor und nach dem Einschalten der Heizung HW. Mit der Kenntnis von HW und ΔTW kann der Wärmewiderstand ϑ (auch als thermischer Widerstand bezeichnet) der Versuchsapparatur, als Verhältnis von ΔTW zu HW, bestimmt werden als (Einheit °C/W):

Da sich die Beschichtung des Strahlungskanals auf den mechanischen Wärmestrom JQ auswirkt, ergeben sich auch verschiedene Wärmewiderstände, die zur besseren Unterscheidung zur Strahlung hier als Leitungs­widerstände ϑJ bezeichnet werden. Dabei zeigt sich, dass eine Beschichtung mit einer Aluminium-Folie eine optimale Lösung darstellt, die die Reflektion im Strahlungskanal verbessert, aber den Leitungswiderstand im Vergleich zum reinen Styropor (ohne Beschichtung) nur unwesentlich verringert (Tabelle 1).

Tabelle 1: Ermittlung der Leitungswiderstände ϑJ in einem Styroporblock

Beschichtung des
Strahlungskanals
HW
W
TW
°C
ΔTW
°C
J
°C/W
ohne 1,16 41,6 24,2 21,0
Aluminium-Folie 1,15 40,5 22,9 20,0
Aluminium -Rohr 1,16 38,0 20,5 17,7

Durch schrittweises Entfernen der inneren Styroporscheiben zeigt sich, dass der mechanische Wärmestrom hauptsächlich über den oberen Styropordeckel und die obere Wandisolierung nach außen abfließen, während die Füllung des Strahlungskanals mit Styropor eine vernachlässigbare Veränderung bewirkt. Dadurch lässt sich der Leitungswiderstand des Styroporblocks auch auf den Strahlungskanal übertragen (siehe: Schnell & Harde 2023 [16]). Außerdem hat ruhende Luft eine geringere Wärmeleitfähigkeit als Styropor, und schon aus diesem Grund kann die Wärmeleitfähigkeit des Strahlungskanals nicht größer sein als die des Styroporblocks.

So ergibt sich für den Strahlungskanal mit Aluminium-Folie mit ϑJ = 20,0 °C/W, HW = 1,2 W und ΔTW = 6,5 °C entsprechend Gl. (4) und (5) ein mechanischer Wärmeverluststrom von

Damit wird die durch IR-Strahlung abgeführte Leistung entsprechend Gl. (2) ΔSWC = 0,87 W und stellt mit 73 % den klar dominanten Anteil an der Wärmeabfuhr dar. Das Aluminium-Rohr hat aufgrund seiner glatten, polierten Oberfläche den höchsten Reflexionsgrad, verliert aber zu viel Wärme durch Wärmeleitung und steht daher nur an zweiter Stelle (Tabelle 2).

Tabelle 2: Anteil der Wärme HW, die durch IR-Strahlung abgeführt wird.

Beschichtung des
Strahlungskanals
HW
W
ΔTW
°C
J
°C/W
JQ
W
ΔSWC
W
ΔSWC
%
ohne 1,20 8,2 21,0 0,39 0,81 67,4
Alu-Rohr 1,20 6,5 17,7 0,37 0,83 69,3
Alu-Folie 1,20 6,5 20,0 0,33 0,87 72,9

2.4 Einfluss paralleler Wärmeströme auf den Treibhauseffekt

Wird die Wärme durch zwei parallele Wärmeströme abgeführt, addieren sich die Wärmewiderstände wie die parallelgeschalteten Widerstände in einer elektrischen Schaltung (Abb. 3):

Abb. 3: a) Wärmeflüsse durch Strahlung und Wärmeleitung, b) elektrisches Ersatzschaltbild.

Der Gesamt-Wärmewiderstand ϑG ist damit immer kleiner als jeder Teilwiderstand, was durch einen Vergleich der Wärmebilanzen eines Styroporblocks und eines Strahlungskanals (in beiden Fällen ohne Beschichtung) gezeigt werden kann (Abb. 4).

Im Falle des Styroporblocks (Fall a) ist die Wärmeleitung JQ der einzige Wärmefluss. Die Temperatur der warmen Platte PW erhöht sich um ΔTW = 24,2 °C, was einem Leitungswiderstand ϑJ = 21 °C/W entspricht und gleichzeitig den Gesamt-Wärmewiderstand ϑG darstellt.

Im Falle des Strahlungskanals (Fall b ohne Styroporscheiben) wird die Wärme der Platte PW parallel durch Wärmeleitung und Strahlungsaustausch abgeführt, wodurch sich die Temperatur nur um ΔTW = 8,8 °C erhöht, was den Gesamt-Wärmewiderstand auf ϑG = 7,3 °C/W verringert. Da, wie oben dargelegt, die inneren Styroporscheiben praktisch keinen Einfluss auf den Leitungswiderstand haben, errechnet sich mit ϑJ = 21 °C/W und ϑG = 7,3 °C/W ein Strahlungswiderstand ϑSt = 11,1 °C/W nach Gl. (7).

Abb. 4: a) Temperatur TW ohne Strahlungskanal, b) zum Vergleich Temperatur TW mit Strahlungskanal.

Dieser Vergleich zeigt das große Potenzial der IR-Strahlung zur Energieübertragung, wodurch wesentlich mehr Wärme abgeführt wird als durch reine Wärmeleitung.

Die Erdoberfläche, die zu mehr als 70 % aus Wasser besteht, wird i. W. durch drei parallele Wärmeströme, Konvektion, Evapotranspiration und Strahlungsaustausch, gekühlt. Durch den Anstieg der CO2-Konzen­tration steigt der Strahlungswiderstand ϑSt, wodurch sich die Erdoberfläche leicht erwärmt. Eine Erderwärmung verursacht aber auch eine Zunahme der Wasserverdampfung mit dem Wärmewiderstand ϑEva, wodurch die Erdoberfläche eine zusätzliche Kühlung erfährt und nach Gl. (7) der Wärmewider­stand ϑG wieder sinkt.

Ein solcher Mechanismus ist eine negative Temperatur-Rückkopplung (siehe Harde 2017 [18]), die leider vom IPCC und den dort referierten Klimamodellen nicht berücksichtigt wird und dadurch zu deutlich höheren Prognosen für eine durch CO2 verursachte Erwärmung führt.

Die durch Verdunstung abgeführte Wärme und die daraus resultierende Wolkenbildung erklären, warum Ozeane auch in den Tropen nur eine maximale Oberflächen-Temperatur von rund 32 °C erreichen. Im Gegensatz dazu werden in den Wüsten der Subtropen, die sich nicht durch Wasserverdampfung kühlen können, Rekordtemperaturen erreicht, wie z.B. im Death Valley mit 56,7 °C in zwei Meter Höhe [19] oder sogar Boden-Temperaturen von 94 °C im Furnace Creek bzw. 78,2 °C in der Dascht-e Lut-Wüste. [20].

2.5 Simulation des Treibhauseffekts

Wird eine geschwärzte, dünne Al-Platte als Zwischenscheibe PI in den Strahlungskanal eingebracht, unterbricht diese den Strahlungsaustausch durch einen Absorptions-Emissions-Zyklus, wobei die der Platte zugeführte Energie beidseitig durch Infrarotstrahlung wieder abgegeben wird. Dieser Vorgang entspricht im Prinzip der Wirkung von Treibhausgasen in der Atmosphäre, mit dem Unterschied, dass in der schwarzen Scheibe alle verfügbaren Wellenlängen eines Planck-Strahlers von der Absorptions-Emissions-Unterbrechung betroffen sind. In diesem Modellversuch ist die gekühlte Platte PC die Energiesenke, der Ort, an dem die durch IR-Strahlung übertragene Nettoenergie abgeführt wird.

Der Modellversuch kann auch als Simulation des Einflusses von Wolken auf den Strahlungsaustausch angesehen werden. In diesem Sinne simuliert die Scheibe PI eine vollständige Wolkenbedeckung und PW die Erdoberfläche. Ein weiterer Sensor auf der Scheibe PI liefert Informationen über die an diesem Ort auftretende Temperatur TI, die der Temperatur der Gase bzw. Wolken entsprechen würde.

Definitionsgemäß ist das Maß für den Treibhauseffekt die Temperaturerhöhung ΔTG der warmen Platte im Vergleich zu einer Messung ohne die Platte PI bei sonst gleicher Heizleistung HW. In drei Versuchen, die sich lediglich im Abstand zwischen der Scheibe PI und der warmen Platte unterscheiden, führt die Existenz dieser Platte im Strahlungskanal zu gut beobachtbaren Temperaturunterschieden von bis zu 2,0 °C (Abb. 5, Tab. 3).

Abb. 5: Temperaturverlauf von TW (Rot) und TI (Gestrichelt) mit Zwischenscheibe PI (5 cm Abstand zu Platte PW). Zum Vergleich die Temperatur TW ohne Scheibe PI (Blau).

Für die Platte PW ist jetzt die Quelle der Rückstrahlung nicht mehr die Platte PC, sondern die wärmere Platte PI mit der Temperatur TI (Rot gestrichelt). Dies führt zu einem Anstieg der Temperatur TW (Rot). Zum Vergleich ist die Temperatur TW ohne die Scheibe PI dargestellt (Blau).

Tabelle 3: Treibhauseffekt einer Aluminiumscheibe

Aluminiumscheibe PI
Abstand zu PW (cm)
HW
W
TC
°C
TW
°C
TI
°C
ΔTW
°C
ΔTG
°C
G
°C/W
5 1,20 17,1 26,1 19,8 9,2 2,00 7,7
30 1,20 16,9 25,7 19,0 8,8 1,60 7,3
55 1,20 16,9 25,3 18,5 8,4 1,20 7,0
ohne Scheibe 1,20 16,8 24,0 7,2 0,00 6,0

Damit wird erneut bestätigt: Die Temperatur eines beheizten Körpers hängt eindeutig von der Intensität der Gegenstrahlung seiner Umgebung ab, auch wenn diese kälter ist.

Übertragen auf die Atmosphäre lässt sich hieraus ableiten, dass der Treibhauseffekt durch TH-Gase vor allem bei klarem Himmel in Erscheinung tritt. Niedrige Wolken mit ihren vergleichsweise hohen Temperaturen erzeugen dagegen eine so starke Gegenstrahlung, dass die Beiträge durch die Treibhausgase überdeckt und deutlich abgeschwächt erscheinen.

Referenzen

  1. J. B. Fourier, 1824: Remarques Générales Sur Les Températures Du Globe Terrestre Et Des Espaces Planétaires. In: Annales de Chimie et de Physique, Vol. 27, 1824, S. 136–167, https://books.google.co.uk/books?id=1Jg5AAAAcAAJ&pg=PA136&hl=pt-BR&source=gbs_selected_pages#v=onepage&q&f=false
  2. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribu-tion of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani et al. (eds.)]. Cambridge University Press, pp. 3−32, doi:10.1017/9781009157896.001.
  3. R. W. Wood, 1909: Note on the Theory of the Greenhouse, London, Edinborough and Dublin Philosophical Magazine, Vol. 17, pp. 319-320. https://zenodo.org/record/1430650#.Yoo9kPTP1EY
  4. T. Allmendinger, 2006: The thermal behaviour of gases under the influence of infrared-radiation, Int. J. Phys. Sci. 11: 183-205. https://academicjournals.org/journal/IJPS/article-full-text-pdf/E00ABBF60017
  5. N. S. Nahle, 2011: Repeatability of Professor Robert W. Wood’s 1909 experiment on the Theory of the Greenhouse, Biology Cabinet Online-Academic Resources and Principia Scientific International, Monterrey, N. L. https://principia-scientific.org/publications/Experiment_on_Greenhouse_Effect.pdf
  6. V. R. Pratt, 2020: Wood’s 1909 greenhouse experiment, performed more carefully,
    http://clim.stanford.edu/WoodExpt/
  7. E. Loock, 2008: Der Treibhauseffekt – Messungen an einem Wood’schen Treibhaus, https://docplayer.org/30841290-Der-treibhauseffekt-messungen-an-einem-wood-schen-treibhaus-von-ehrenfried-loock-version.html
  8. T. O. Seim, B. T. Olsen, 2020: The Influence of IR Absorption and Backscatter Radiation from CO2 on Air Temperature during Heating in a Simulated Earth/Atmosphere Experiment, Atmospheric and Climate Sciences, 10, pp. 168-185, https://doi.org/10.4236/acs.2020.102009.
  9. H. v. Ditfurth, 1978: Studio-Demonstration in Deutschem TV, ZDF TV-Series „Querschnitte“.
  10. M. Schnell, 2020: Die falschen Klimaexperimente,
    https://www.eike-klima-energie.eu/2020/11/06/die-falschen-klima-experimente/
  11. A. Gore, D. Guggenheim, 2006: An Inconvenient Truth, Movie, https://www.imdb.com/title/tt0497116/
  12. A. Watts, 2011: Replicating Al Gore’s Climate 101 video experiment shows that his „high school physics“ could never work as advertised,
    https://wattsupwiththat.com/2011/10/18/replicating-al-gores-climate-101-video-experiment-shows-that-his-high-school-physics-could-never-work-as-advertised/?cn-reloaded=1
  13. J.-E. Solheim, 2016: Start des zweitägigen „Al Gore-Experiments“, 10. Internationale Klima- und Energie-Konferenz (10. IKEK), EIKE, Berlin, https://www.eike-klima-energie.eu/2017/02/04/10-ikek-prof-em-jan-erik-solheim-start-des-zweitaegigen-al-gore-experiments/.
  14. H. Harde, M. Schnell, 2022: Verification of the Greenhouse Effect in the Laboratory, Science of Climate Change, Vol. 2.1, pp. 1-33, https://doi.org/10.53234/scc202203/10.
  15. H. Harde, M. Schnell, 2022: Nachweis des Treibhauseffekts im Labor,
    http://hharde.de/index_htm_files/Harde-Schnell-THE-m.pdf
  16. M. Schnell, H. Harde, 2023: Model-Experiment of the Greenhouse Effect, Science of Climate Change, Vol. 3.5, pp. 445 – 462, https://doi.org/10.53234/scc202310/27
  17. J. Stefan, 1879: Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften, 79, S. 391 – 428
  18. H. Harde, 2017: Radiation Transfer Calculations and Assessment of Global Warming by CO2, International Journal of Atmospheric Sciences, Volume 2017, Article ID 9251034, pp. 1-30, https://doi.org/10.1155/2017/9251034.
  19. Wikipedia, Temperaturextrema, https://de.wikipedia.org/wiki/Temperaturextrema
  20. Wikipedia, https://en.wikipedia.org/wiki/Dasht-e_Lut

Wegen der nicht genauen Darstellung von Indizes und Sonderzeichen, hier nochmal der Teil 1 als pdfGibt es einen Atmosphärischen Treibhauseffekt Teil 1 Vollständig




Kernkraft auf dem Vormarsch – ohne Sonderweg-Deutschland

Über 30 Staaten haben sich beim internationalen Atomgipfel in Brüssel auf den Ausbau von Kernenergie geeinigt. Das Gruppenbild spricht Bände: traute Eintracht – ohne Vertreter aus Deutschland. Deutschland zerstört lieber eines der besten Kraftwerke der Welt: Isar 2 fällt demnächst grünem Vernichtungswahn zum Opfer. 

Von Holger Douglas

In einem der besten Kernkraftwerke der Welt können jetzt die Metallsägen beginnen, ihr Werk zu vollziehen: Im Kernkraftwerk Isar 2 östlich von München wurde die Genehmigung für den Abbruch erteilt, jetzt kann die Zerstörung beginnen. Unter weitem Beifall wird eines der leistungsfähigsten Kraftwerke verschrottet: Es fällt grünem Vernichtungswahn zum Opfer.

Auch Ministerpräsident Söder tat nichts, um das Unheil abzuwenden. Er weiß nicht, woher künftig der Strom für seine Industrie kommen soll. Die ersten Unternehmen haben bereits abgesagt, am Standort zu investieren. Grund: kein bezahlbarer und sicherer Strom. Stattdessen sollen in dem »Chemiedreieck« im Südosten Bayerns rund um Burghausen jetzt Windräder die Energieversorgung übernehmen; Windräder in einer der windschwächsten Ecken Deutschlands – größer kann der Lacherfolg über diesen gelungenen Streich nicht sein.

Sogar Luxemburg sieht eine Zukunft für Kernkraft. Das Land werde zwar keine Reaktoren bauen, wie Premierminister Frieden sagte, doch erkennt das Land die Bedeutung der Kernkraft im Kampf gegen so etwas wie den Klimawandel an. Bemerkenswert: Während das Land meistens Nachbar Deutschland folgte, geht es jetzt den Weg des restlichen Europas.

Damit steht Deutschland komplett im Abseits. Zuletzt zu sehen beim ersten internationalen Gipfeltreffen für Atomenergie in Brüssel. Vertreter von rund 30 Staaten haben sich dort auf einen beschleunigten Ausbau der Kernenergie geeinigt. Sie haben in einer gemeinsamen Erklärung ihren Einsatz für einen schnelleren Ausbau sowie eine vereinfachte Finanzierung von Atomkraft bekräftigt. Die Teilnehmer betonten die entscheidende Rolle von Atomkraftwerken bei der Reduzierung klimaschädlicher CO2-Emissionen.

Bedeutung bekam dieses Treffen, weil nicht nur ein paar EU-Größen, sondern hochrangige Vertreter aus den USA, China und Japan an dem Treffen teilnahmen. So war der stellvertretende Ministerpräsident Chinas, Zhang Guoqing, immerhin der zweithöchste Mann in dem Staat, angereist. Das Gruppenbild vor dem renovierten Atomium in Brüssel sprach Bände: traute Eintracht – ohne einen Vertreter aus Deutschland.

In einer Zeit, in der »Selbstverpflichtungen« in sind, »verpflichteten« sich jetzt 34 Länder, darunter die Vereinigten Staaten, China, Frankreich, Großbritannien und Saudi-Arabien, »darauf hinzuarbeiten, das Potenzial der Kernenergie voll auszuschöpfen, indem sie Maßnahmen ergreifen, die es ermöglichen, die Laufzeitverlängerung bestehender Kernreaktoren, den Bau neuer Kernkraftwerke und den frühzeitigen Einsatz fortschrittlicher Reaktoren zu unterstützen und wettbewerbsfähig zu finanzieren.« Weiter heißt es: »Wir verpflichten uns, alle Länder, insbesondere die Schwellenländer, bei ihren Kapazitäten und Bemühungen zu unterstützen, die Kernenergie in ihren Energiemix aufzunehmen.«

Neben dem Bau neuer Atomkraftwerke unterstützten die Teilnehmer auch die Verlängerung der Lebensdauer bestehender Anlagen. Zudem plädierten sie für die zügige Einführung neuerer und kleinerer Reaktoren, um die Nutzung von Atomenergie zu optimieren. Die Teilnehmer forderten internationale Finanzinstitutionen wie die Weltbank zudem auf, Atomprojekte stärker zu unterstützen.

Die Noch-Kommissionspräsidentin von der Leyen tönte in das gleiche Atomhorn und wies bei dem Treffen darauf hin, dass Kernkraft mit einem Anteil von rund 22 Prozent die größte Stromquelle in der EU sei. Jetzt rief sie Staatschefs und Minister aus 37 Ländern dazu auf, eine mögliche Laufzeitverlängerung ihrer Atomkraftwerke zu prüfen und den Neubau voranzutreiben. Erstaunliche Worte von UvdL – war doch Deutschland bei dem Gipfel nicht vertreten. Hier hat Habeck Wichtigeres zu tun: Kraftwerke abschalten.

Ganz anders in Frankreich: Hier betonte Präsident Macron, »dass Frankreich eines der wenigen Länder dank seines Nuklearmodells ist, das Strom exportiert, was eine Chance ist.« Mit Sicherheit hatte er den Blick ins Nachbarland Deutschland im Sinn, in dem es künftig viel Geld mit der Lieferung von Strom zu verdienen gibt. Wie lang Deutschland noch bezahlen kann, ist offen.

In den kommenden Jahren sollen in Frankreich mindestens sechs neue Kernkraftwerke gebaut werden. Acht weitere Kernkraftwerke werden geplant. Dies sei nötig, um die Klimaziele zu erreichen, so die Regierung Macron.

Es ist ein gewaltiges Wiederaufbauprogramm einer Kraftwerksindustrie notwendig. Viel Know-how im Kraftwerksbau ist in den vergangenen Jahrzehnten verloren gegangen, seitdem der Atomausstieg in Europa vorangetrieben werden sollte. Fachkräfte fehlen wie zum Beispiel zertifizierte Schweißer, die Reaktordruckgefäße sicher schweißen können.

Der modernste Reaktor, der derzeit in Flamanville fertiggestellt wird, soll Mitte dieses Jahres ans Netz gehen können. Eigentlich hätte er bereits seit Ende 2022 mit Brennstäben befüllt werden sollen. Doch dieser Termin hat sich erheblich nach hinten verschoben; auch wurde der neue Block drei erheblich teurer als geplant. 13,2 Milliarden statt 12,7 Milliarden Euro wird jetzt das Kraftwerk an der Küste des Ärmelkanals kosten. Ursprünglich wurden die Baukosten mit 3,3 Milliarden Euro kalkuliert. Ebenso drastisch teurer wurde der Bau des britischen Kernkraftwerkes Hinkley Point C, ebenfalls ein sogenannter europäischer Druckwasserreaktor. Exorbitant viel teurer geworden ist auch der finnische Reaktor Ol-kiluoto.

Jetzt hofft die Politik auf eine Senkung der Kosten, wenn erst einmal wieder eine Kernkraftwerksindustrie und entsprechendes Know-how »Wie baut man ein Atomkraftwerk?« aufgebaut sein wird und Reaktoren in Serie errichtet werden. In Frankreich geht man davon aus, dass in den kommenden Jahren 100.000 neue Arbeitsplätze im Kraftwerksbau entstehen werden.

Auch bestehende Kraftwerke werden in Frankreich aufgerüstet, damit sie länger laufen können. Das ursprüngliche Ziel ‚weg von der Atomkraft‘, das auch in Frankreich von den Grünen hochgehalten wurde, um den Anteil der Kernkraftwerke auf unter 50 Prozent zu senken, hat die Regierung Macron im vergangenen Jahr kurzerhand gekippt.

Der Beitrag erschien zuerst bei TE hier

 




ISAR 2: Das beste Kernkraftwerk der Welt wird zersägt

Die Rückbaugenehmigung für ISAR 2 ist erteilt, hieß es am Freitag. Der Betreiber Preussen Elektra könne den Rückbau unverzüglich durchführen.

Von Manfred Haferburg

Eine wenig beachtete DPA-Meldung leitet in Deutschland eine Zeitenwende ein: „Genehmigung für Rückbau des Atomkraftwerks Isar 2 erteilt. ESSENBACH (dpa-AFX) – Fast ein Jahr nach dem Abschalten des letzten bayerischen Atomkraftwerks liegt hierfür nun die Rückbaugenehmigung vor. Der Bescheid für den Meiler Isar 2 in Essenbach im Landkreis Landshut sei am Freitag erlassen worden, teilte ein Sprecher des Umweltministeriums mit. Damit könne der Betreiber Preussen Elektra den Rückbau unverzüglich durchführen.“ 

Jetzt kommen in ISAR 2 die Männer mit den Trennschleifmaschinen und Sägen. Sie werden in einer klinisch sauberen Umgebung hochglänzende Rohre auf Schrottgröße zerschneiden. Sie werden perfekt funktionierende Pumpen auseinanderbauen, um ihre Bauteile zu verschrotten. Sie werden super funktionierende Armaturen zerlegen und in Metallwertstoffe verwandeln. Sie machen aus hochmoderner Steuerelektronik Kupferschrott.

Deutsche Gründlichkeit in Aktion

Vor 15 Jahren erzeugte die Kernenergie ein Viertel des deutschen Strombedarfs. Dann beschlossen größenwahnsinnige Politiker, dass aus dieser Technologie ausgestiegen werden sollte. So entstand die „dümmste Energiepolitik der Welt“.

Ein Großversuch wurde gestartet, ob mit den Energiequellen des Mittelalters ein Industrieland betrieben werden kann. Unsummen von Geld wurden investiert. Eine unfassbare Propaganda begleitete diesen Versuch und gaukelte den Menschen vor, dass dies problemlos machbar und am Ende billiger sein würde. Dieser Nachweis konnte bis heute trotzdem nicht erbracht werden. Aus den Vorreitern sind Geisterfahrer geworden.

Alle Vorgänge, welche die Energiepolitik betreffen, sind langfristig. Ein Kraftwerk zu planen und zu bauen, dauert zwei Legislaturperioden. Danach kann es zehn bis fünfzehn Legislaturperioden betrieben werden. Dazu braucht es Fachwissen und Erfahrung, Verwaltungsstrukturen und Hersteller.

Langsam setzt sich in der Bevölkerung die Erkenntnis durch, dass die Energiewende scheitert und das Land in einen industriellen und ökonomischen Abgrund reißt. Bei kommenden Wahlen droht der Regierung die Abwahl. Darum heißt es jetzt für die fanatischen Energiewender, schnell zu handeln. Die neuen Brunnen geben zwar noch kein Wasser, aber die alten Brunnen müssen ganz schnell zugeschüttet werden. Die Kernkraftwerke müssen unbrauchbar gemacht werden.

Das ist ein zutiefst undemokratisches Ziel: Es wird mit der Zerstörung der kerntechnischen Infrastruktur eine Situation erzeugt, die weit über die Legislaturperiode der Entscheider hinaus wirkt. Der Gesellschaft wird der Weg zurück zu einer neuen Entscheidung verbaut. Deutschland wird vom führenden Kernenergieland zum kerntechnischen Entwicklungsland. Mit der Zerstörung des letzten Kernkraftwerkes wurde dieser Pyrrhussieg errungen. Die Folgen wird neben der heutigen Generation auch die nächste Generation tragen.

Der Kernenergieausstieg war ein gigantischer Fehler

Derzeit sind weltweit 53 Reaktoren im Bau, davon 21 in China, acht in Indien und jeweils drei in Russland, Südkorea und der Türkei. In der EU sind es einer in Frankreich und zwei in der Slowakei, dazu kommen zwei in Großbritannien. Etwa 100 Reaktoren sind in der Planung. Kernenergie wird von der EU als „erneuerbare Energie“ geführt und gefördert, weil sie weniger CO2 erzeugt als alle anderen Stromquellen.

Obwohl die beteiligten Politiker von CDU/CSU, FDP und Freien Wählern längst begriffen haben, dass der Ausstieg ein gigantischer Fehler war, haben sie ihn weiter betrieben. Zu tief waren sie in die Ausstiegspolitik verstrickt, an zu vielen Fehlern waren sie aktiv beteiligt. Seit Kurzem sind diese Parteien für den KKW-Weiterbetrieb. Sie haben das sogar heuchlerisch in ihre Parteiprogramme geschrieben. Aber wenn es darauf ankam, haben sie gegen diesbezügliche Anträge der AfD gestimmt und somit der Kernenergie das Genick gebrochen.

Ein großes Kapitel der Energieversorgung wird geschlossen

Der Bayerische Amtsschimmel hat bei der Erteilung der Verschrottungsgenehmigung eine erstaunliche Agilität gezeigt, es konnte ihm gar nicht schnell genug gehen. Da helfen auch die heuchlerischen Beteuerungen des Bayerischen Umweltministers Thorsten Glauber (Freie Wähler) nichts, der den deutschen Atomausstieg am Freitag als falsch bezeichnete. „Wir haben uns immer dafür eingesetzt, die Kernkraftwerke als klimafreundliche Brücke vorübergehend weiterlaufen zu lassen. Mit dem Atomgesetz erzwingt der Bund, dass der Bescheid zum Rückbau von Isar 2 erlassen wird. Das ist der nächste Schritt auf dem energiepolitischen Irrweg des Bundes. Damit wird ein großes Kapitel der bayerischen Energieversorgung geschlossen.

Das KKW ISAR 2 gehörte zu den besten Kernkraftwerken der Welt, und es hätte der Wirtschaft des Freistaates Bayern noch gut 30 Jahre sicheren und günstigen Strom liefern können. Es hatte rund 18 Prozent des Stroms für Bayern zum Gestehungspreis von ca. 4 Ct/kWh erzeugt. Das Kraftwerk war zehn Jahre lang „Erzeugungsweltmeister“. Kein anderes Kraftwerk auf der ganzen Welt hatte in diesen zehn Jahren mehr und zuverlässiger günstigen Strom mit einer Verfügbarkeit von 95 Prozent erzeugt. ISAR 2 hatte sogar jahrelang geholfen, durch Hoch- und Runterfahren die Leistung des Flatterstroms von Wind und Sonne auszugleichen. Diesen Fakt streiten Grüne auch heute noch ab und behaupten, dass Kernenergiestrom „die Netze verstopft“.

ISAR 2 muss durch 1.500 Windräder und drei Gaskraftwerke ersetzt werden

ISAR 2 soll nun nach den Plänen der Bundesregierung durch die Flatterstromerzeuger Wind und Sonne ersetzt werden. Noch scheint in Bayern nachts die Sonne nicht. Das wird sich aller Wahrscheinlichkeit nach auch so bald nicht ändern. Windkraftanlagen haben leider nur eine Verfügbarkeit von 20 Prozent. In Bayern kommen Windräder auf einen Stromgestehungspreis von 11 Ct/kWh.

Um die 1.500 Megawatt von Isar rein rechnerisch zu ersetzen, müssen also ca. 1.500 moderne Windkraftanlagen von je 5 Megawatt in die Bayerische Landschaft gestellt werden. Da es aber auch in Bayern windstille Zeiten gibt, müssen dazu noch drei große Gaskraftwerke von je 500 MW errichtet werden. Da diese wegen des Windeinspeisevorrangs nur unwirtschaftlich betrieben werden können, muss der Stromkunde und Steuerzahler sie bezahlen.

Es ist ungefähr so, als ob Bayern eine fast neue Miele-Waschmaschine verschrottet, um dafür eine Unzahl von superteuren Wäsche-Rubbelbrettern einzukaufen.

Das deutsche Panikorchester

Berufspolitiker haben drei Prioritäten, die ihr ganzes Handeln bestimmen. Zuerst kommt die eigene Politikerkarriere. Dann kommt die eigene Macht. Und dann kommt die eigene Partei als Vehikel zu Karriere und Macht. Die Politik erkannte, dass Kernenergiegegnerschaft ihnen auf dem Weg zur Erreichung ihrer Ziele nützlich sein konnte. Mit dem Kernenergieausstieg wurden Parteiprogramme verziert und Wahlen gewonnen. Es wurde chic, gegen Kernenergie zu sein. Kernenergiegegnerschaft gehörte viele Jahre zur deutschen Kultur.

Keiner der Beteiligten kommt auf die Idee, sich zu fragen, ob die vielen Länder, die Kernenergie betreiben und ausbauen, allesamt völlig verblödet sind, weil sie Probleme, die es zweifelsfrei auch gibt, als lösbar ansehen. Die Deutschen erwarben sich einen Ruf als Besserwisser.

Doch nun kommen unweigerlich die Konsequenzen. Wer wird die verfehlte deutsche Energiepolitik ausbaden müssen? Diese Frage ist einfach zu beantworten: Es sind die kleinen Leute. Unter dem Begriff „Degrowth“ wird schon der Verzicht gepredigt, natürlich zur Weltrettung durch Deutschland. Der Verzicht wird auf Dauer kein freiwilliger sein. Weil sich die kleinen Leute dann eben nicht mehr die Annehmlichkeiten des Lebens leisten können. Leckeres Fleisch essen, modische Kleidung tragen, schöne Urlaubsreisen machen, ein kleines Häuschen mit Garten, ein schönes Auto und was dergleichen Lebensträume sind – weg damit. Wer es noch nicht begriffen hat: Deutschland geht mit dem Abriss von ISAR 2 einen weiteren großen Schritt  auf seinem Weg in die Energieknappheits-Rezession.

Der Beitrag erschein zuerst bei Achgut hier